【题目】已知椭圆
的离心率
,焦距为2,直线
与椭圆
交于
,
两点.
![]()
(1)求椭圆
的标准方程;
(2)若直线
过椭圆的右焦点
,且
,求直线
方程;
(3)设
为坐标原点,直线
,
的斜率分别为
,
,若
,求
面积
的值.
【答案】(1)
;(2)
;(3)![]()
【解析】
(1)根据椭圆的离心率和焦距确定基本量,从而得到椭圆的方程;
(2)设出直线的待定系数方程,与椭圆方程联立,根据线段长度关系得到点的纵坐标的关系求解;
(3)联立直线与椭圆方程,结合韦达定理得到三角形的面积的表达式,化简得到结论,注意对直线的斜率情况分类讨论.
解:(1)设椭圆的焦距为
,则由
,
则
.
(2)若直线
斜率为
,
则
,不合题意,
所以
斜率不为
,设其方程为
,
联立
,
设
,
,
则
,
,
又![]()
,
故直线
.
(3)当直线
的斜率为0时,则
,不妨设
,
由
,得
,
直线
方程
与椭圆方程联立,
,整理得
,
所以
坐标分别为
,
或
,
,
此时
;
当直线
的斜率不为0时,设直线
,
联立
,
则
,
,
∵
,
又
,
∴
,
化简得
,
从而
,
∴
.
综上,
的面积
.
科目:高中数学 来源: 题型:
【题目】高二某班共有45人,学号依次为1、2、3、…、45,现按学号用系统抽样的办法抽取一个容量为5的样本,已知学号为6、24、33的同学在样本中,那么样本中还有两个同学的学号应为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)写出直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)已知点
,直线
与曲线
相交于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为
的直线交抛物线
于
两点,已知点
的横坐标比点
的横坐标大4,直线
交线段
于点
,交抛物线于点
.
![]()
(1)若点
的横坐标等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆
的圆心到直线
的距离;
(2)已知
,若直线
与圆
交于
两点,
为
的中点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒(
肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为
,
两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下
的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
| 16 | 34 | 50 |
| 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对
组、
组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有
的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
|
|
|
|
|
|
|
|
|
|
|
|
附:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C:y=
,D为直线y=
上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,
)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com