精英家教网 > 高中数学 > 题目详情
3.方程9x+|3x+b|=5(b∈R)有两个负实数解,则b的取值范囤为(  )
A.(3,5)B.(-5.25,-5)C.[-5.25,-5)D.前三个都不正确

分析 化简9x+|3x+b|=5可得3x+b=5-9x或3x+b=-5+9x,从而讨论以确定方程的根的个数,从而解得.

解答 解:∵9x+|3x+b|=5,
∴|3x+b|=5-9x
∴3x+b=5-9x或3x+b=-5+9x
①若3x+b=5-9x,则b=5-3x-9x
其在(-∞,0)上单调递减,
故当b≤3时,无解,
当3<b<5时,有一个解,
当b≥5时,无解;
②若3x+b=-5+9x,则b=-5-3x+9x=(3x-$\frac{1}{2}$)2-$\frac{21}{4}$,
∵x∈(-∞,0)时,0<3x<1,
∴当-$\frac{21}{4}$<b<-5时,有两个不同解;
当b=-$\frac{21}{4}$时,有一个解;
综上所述,b的取值范围为(-5.25,-5),
故选B.

点评 本题考查了绝对值方程的解法与应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某人设置一种游戏,其规则是掷一枚均匀的硬币4次为一局,每次掷到正面时赋值为1,掷到反面时赋值为0,将每一局所掷4次赋值的结果用(a,b,c,d)表示,其中a,b,c,d分别表示掷第一、第二、第三、第四次的赋值,并规定每局中“正面次数多于反面次数时获奖”.
(Ⅰ)写出每局所有可能的赋值结果;
(Ⅱ)求每局获奖的概率;
(Ⅲ)求每局结果满足条件“a+b+c+d≤2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={1,m2},B={2,9},则“m=3”是“A∩B={9}”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x3+lg($\sqrt{{x}^{2}+1}$+x,若f(x)的定义域中是a,b满足f(-a)+f(-b)=f(a)+f(b)+3,则f(a)+f(b)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定积分${∫}_{0}^{\sqrt{2}}$($\sqrt{2-{x}^{2}}$-x)dx的值为$\frac{π}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,则关于x的不等式f(2x-1)-f(x+1)>0的解集为(  )
A.(-∞,-$\frac{4}{3}$)∪(2,+∞)B.(-$\frac{4}{3}$,2)C.(-∞,$\frac{4}{3}$)∪(2,+∞)D.($\frac{4}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中,含x3项的系数是64(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,点(n,$\frac{{S}_{n}}{n}$)(n∈N*)均在函数y=3x-2的图象上.
(1)求证:数列{an}为等差数列;
(2)Tn是数列{$\frac{3}{{{a}_{n}a}_{n+1}}$}的前n项和,求使Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x0∈R,x0-2>0,命题q:?x∈R,2x>x2,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

同步练习册答案