精英家教网 > 高中数学 > 题目详情
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.

(Ⅰ)求 的表达式;
(Ⅱ)当x为何值时,取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
(Ⅰ)(Ⅱ)取得最大值(Ⅲ)

试题分析:(Ⅰ)根据四棱锥的体积公式可知
;
(Ⅱ),
时, 时, 
取得最大值.
(Ⅲ)以E为空间坐标原点,直线EF为轴,直线EB为轴,直线EP为轴建立空间直角坐标系,则;
,
设异面直线AC与PF夹角是
.
点评:本小题融合了四棱锥的体积计算,函数的最值,异面直线所成的角等问题,比较综合,但是难度不大,求解时要注意取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB为等边三角形。(12分)

(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是异面直线,则(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距离相等;(4)一定存在无数对平面α和β,使mα,nβ且α⊥β。上述4个命题中正确命题的序号是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点,作PB于点F

(I) 证明: PA∥平面EDB
(II) 证明:PB⊥平面EFD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是(  )
A.     B.
C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,中点,上一个动点.

(Ⅰ)确定点的位置,使得
(Ⅱ)当时,求二面角的平
面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,有下列四个命题:
①若//,,则;         ②若,,则//;
③若,,则;       ④若//,//,则//.
其中正确命题的个数是
A.1个B.2个
C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两个不同的平面,是两条不同直线.①若,则
②若,则
③若,则
④若,则以上命题正确的是            .(将正确命题的序号全部填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

查看答案和解析>>

同步练习册答案