精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中向量

1)求函数的最小正周期与单调递减区间;

2)在中,分别是角的对边,已知的面积为,求外接圆半径

【答案】1的单调递减区间是;(2

【解析】

试题(1)用坐标表示向量条件,代入函数解析式中,运用向量的坐标运算法则求出函数解析式并应用二倍角公式以及两角和的正弦公式化简函数解析式,由三角函数的性质可求函数的最小正周期及单调递减区间;(2)将条件代入函数解析式可求出角,由三角形面积公式求出边,再由余弦定理求出边,再由正弦定理可求外接圆半径.

试题解析:(1)由题意得:

所以,函数的最小正周期为,由

函数的单调递减区间是

2,解得

的面积为.得

再由余弦定理,解得

,即为直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2019迎新年联欢会上,为了活跃大家气氛,设置了“摸球中奖”游戏,桌子上放置一个不透明的箱子,箱子中有3个黄色、3个白色的乒乓球(其体积、质地完全相同)游戏规则:从箱子中随机摸出3个球,若摸得同一颜色的3个球,摸球者中奖价值50元奖品;若摸得非同一颜色的3个球,摸球者中奖价值20元奖品.

(1)摸出的3个球为白球的概率是多少?

(2)假定有10人次参与游戏,试从概率的角度估算一下需要准备多少元钱购买奖品?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图所示.

(1)根据直方图求x的值,并估计该小区100户居民的月均用电量(同一组中的数据用该组区间的中点值作代表);
(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有ξ户月用电量超过300度,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: =1(α>b>0)经过点( ),且原点、焦点,短轴的端点构成等腰直角三角形.
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B.且 ?若存在,求出该圆的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的条件下,若△ABC的面积为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形,平面为的中点.

(Ⅰ) 求证: 平面

(Ⅱ) 求证:

(Ⅲ)若为线段上的点,当三棱锥的体积为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是菱形,⊥平面.

(1)求证:平面⊥平面

(2)若与平面所成夹角为,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.

(1)分别求出的值;

(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?

(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.

查看答案和解析>>

同步练习册答案