【题目】驻马店市政府委托市电视台进行“创建森林城市”知识问答活动,市电视台随机对该市15~65岁的人群抽取了人,绘制出如图1所示的频率分布直方图,回答问题的统计结果如表2所示.
(1)分别求出的值;
(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人?
(3)在(2)的条件下,电视台决定在所抽取的7人中随机选2人颁发幸运奖,求所抽取的人中第二组至少有1人获得幸运奖的概率.
【答案】(1),,,;(2)2人,3人,1人,1人;(3).
【解析】
(1)先计算出总人数为1000人,再根据公式依次计算的值.
(2)根据分层抽样规律得到从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人
(3)排出所有可能和满足条件的情况,得到概率.
(1)依题和图表:
由得:,
由得:,
由得:,
由得:,
由得:,
故所求,,,.
(2)由以上知:第二、三、四、五组回答正确的人数分别为:180人,270人,90人,90人
用分层抽样抽取7人,则:
从第二组回答正确的人中应该抽取: 人,
从第三组回答正确的人中应该抽取:人,
从第四组回答正确的人中应该抽取: 人,
从第五组回答正确的人中应该抽取: 人,
故从第二、三、四、五组每组回答正确的人中应分别抽取:2人,3人,1人,1人;
(3)设从第二组回答正确的人抽取的2人为: ,
从第三组回答正确的人抽取的3人为:
从第四组回答正确的人抽取的1人为:
从第五组回答正确的人抽取的1人为:
随机抽取2人,所有可能的结果有: ,,,,,,,,,,,,,,,,,,,,,共21个基本事件,其中第二组至少有1人被抽中的有:,,,,,,,,,,共这11个基本事件.
故抽取的人中第二组至少有1人获得幸运奖的概率为:.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若点的极坐标为,是曲线上的一动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.
(1)求家庭的月储蓄对月收入的线性回归方程;
(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;
(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱锥P﹣ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积( )
A.4π
B.6π
C.8π
D.12π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为 ,乙队猜对前两条的概率均为 ,猜对第3条的概率为 .若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com