精英家教网 > 高中数学 > 题目详情
18.设实数a,b,t满足|a+1|=|sinb|=t.则(  )
A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定
C.若t确定,则sin$\frac{b}{2}$唯一确定D.若t确定,则a2+a唯一确定

分析 根据代数式得出a2+2a=t2-1,sin2b=t2,运用条件,结合三角函数可判断答案.

解答 解:∵实数a,b,t满足|a+1|=t,
∴(a+1)2=t2
a2+2a=t2-1,
t确定,则t2-1为定值.
sin2b=t2
A,C不正确,
∴若t确定,则a2+2a唯一确定,
故选:B

点评 本题考查了命题的判断真假,属于容易题,关键是得出a2+2a=t2-1,即可判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}\end{array}\right.$,若z=2x-y的最大值为2,则实数m等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=3,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为$\frac{\sqrt{π}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=(  )
A.[3,4)B.(2,3]C.(-1,2)D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面单位向量,且$\overrightarrow{e}$1•$\overrightarrow{e}$2=$\frac{1}{2}$,若平面向量$\overrightarrow{b}$满足$\overrightarrow{b}$•$\overrightarrow{e}$1=$\overrightarrow{b}$•$\overrightarrow{{e}_{2}}$=1,则|$\overrightarrow{b}$|=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我们把离心率相等的椭圆称之为“同基椭圆”,已知椭圆C1:$\frac{{x}^{2}}{{{m}^{2}}_{1}}+{y}^{2}=1({m}_{1}>1)$C2:y2+$\frac{{x}^{2}}{{{m}^{2}}_{2}}$=1(0<m2<1)为:“同基椭圆”,直线l:y=a(0<a<1)与曲线C1从左至右依次交于A,D两点,与曲线C2从左至右交于B,C两点,O为坐标原点,当a=$\frac{\sqrt{3}}{2}$,|AC|=$\frac{5}{4}$时,则m1=(  )
A.4B.2C.1.5D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=2sinωx(ω>0)在(0,2π)上有两个极大值和一个极小值,则ω的取值范围是(  )
A.($\frac{5}{4}$,$\frac{7}{4}$]B.($\frac{3}{4}$,$\frac{4}{5}$]C.(1,$\frac{5}{4}$]D.($\frac{3}{4}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点到其渐近线的距离等于4,抛物线y2=2px的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为8,则抛物线方程为(  )
A.y2=4xB.y2=4$\sqrt{2}x$C.y2=8$\sqrt{2}x$D.y2=16$\sqrt{2}x$

查看答案和解析>>

同步练习册答案