精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为$\frac{\sqrt{π}}{2}$.

分析 由两角和的正弦函数公式化简解析式可得f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$),由2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调递增区间,结合已知可得:-ω≥$\frac{2kπ-\frac{3π}{4}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{4}}{ω}$②,k∈Z,从而解得k=0,又由ωx+$\frac{π}{4}$=kπ+$\frac{π}{2}$,可解得函数f(x)的对称轴为:x=$\frac{kπ+\frac{π}{4}}{ω}$,k∈Z,结合已知可得:ω2=$\frac{π}{4}$,从而可求ω的值.

解答 解:∵f(x)=sinωx+cosωx=$\sqrt{2}$sin(ωx+$\frac{π}{4}$),
∵函数f(x)在区间(-ω,ω)内单调递增,ω>0
∴2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调递增区间为:[$\frac{2kπ-\frac{3π}{4}}{ω}$,$\frac{2kπ+\frac{π}{4}}{ω}$],k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{3π}{4}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{4}}{ω}$②,k∈Z,
∴解得:0<ω2≤$\frac{3π}{4}-2kπ$且0<ω2≤2k$π+\frac{π}{4}$,k∈Z,
解得:-$\frac{1}{8}$$<k<\frac{3}{8}$,k∈Z,
∴可解得:k=0,
又∵由ωx+$\frac{π}{4}$=kπ+$\frac{π}{2}$,可解得函数f(x)的对称轴为:x=$\frac{kπ+\frac{π}{4}}{ω}$,k∈Z,
∴由函数y=f(x)的图象关于直线x=ω对称,可得:ω2=$\frac{π}{4}$,可解得:ω=$\frac{\sqrt{π}}{2}$.
故答案为:$\frac{\sqrt{π}}{2}$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,正确确定k的值是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
日期123456789101112131415
天气
日期161718192021222324252627282930
天气

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点$(0,\sqrt{2})$,且离心率e为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆E的方程;
(2)设直线x=my-1(m∈R)交椭圆E于A,B两点,判断点G$(-\frac{9}{4},0)$与以线段AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W121518
P0.30.50.2
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为B,左焦点为F,离心率为$\frac{\sqrt{5}}{5}$.
(Ⅰ)求直线BF的斜率.
(Ⅱ)设直线BF与椭圆交于点P(P异于点B),过点B且垂直于BP的直线与椭圆交于点Q(Q异于点B),直线PQ与y轴交于点M,|PM|=λ|MQ|.
(i)求λ的值.
(ii)若|PM|sin∠BQP=$\frac{7\sqrt{5}}{9}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设实数a,b,t满足|a+1|=|sinb|=t.则(  )
A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定
C.若t确定,则sin$\frac{b}{2}$唯一确定D.若t确定,则a2+a唯一确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若变量x,y满足$\left\{\begin{array}{l}{|x|+|y|≤1}\\{xy≥0}\end{array}\right.$,则2x+y的取值范围为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在极坐标系中,与曲线ρ=cosθ+1关于直线θ=$\frac{π}{6}$(ρ∈R)对称的曲线的极坐标方程是(  )
A.ρ=sin($\frac{π}{3}$+θ)+1B.ρ=sin($\frac{π}{3}$-θ)+1C.ρ=sin($\frac{π}{6}$+θ)+1D.ρ=sin($\frac{π}{6}$-θ)+1

查看答案和解析>>

同步练习册答案