精英家教网 > 高中数学 > 题目详情
14.某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W121518
P0.30.50.2
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

分析 (1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,列出可行域,目标函数,通过当W=12时,当W=15时,当W=18时,分别求出目标函数的最大获利,然后得到Z的分布列.求出期望即可.
(2)判断概率类型是二项分布,然后求解所求概率即可.

解答 (12分)
解:(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有
 $\left\{\begin{array}{l}2x+1.5y≤W\\ x+1.5y≤12\\ 2x-y≥0\\ x≥0,y≥0\end{array}\right.$,①如图1,目标函数为:z=1000x+1200y.
当W=12时,①表示的平面区域如图1,三个顶点分别为A(0,0),B(2.4,4.8),C(6,0).
将z=1000x+1200y变形为$y=-\frac{5}{6}x+\frac{z}{1200}$,
当x=2.4,y=4.8时,直线l:$y=-\frac{5}{6}x+\frac{z}{1200}$在y轴上的截距最大,
最大获利Z=Zmax=2.4×1000+4.8×1200=8160.
当W=15时,①表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C(7.5,0)..
将z=1000x+1200y变形为$y=-\frac{5}{6}x+\frac{z}{1200}$,
当x=3,y=6时,直线l:$y=-\frac{5}{6}x+\frac{z}{1200}$在y轴上的截距最大,
最大获利Z=Zmax=3×1000+6×1200=10200.
当W=18时,①表示的平面区域如图3,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).

将z=1000x+1200y变形为:$y=-\frac{5}{6}x+\frac{z}{1200}$,
当x=6,y=4时,直线l:y=-56x+z1200在y轴上的截距最大,最大获利Z=Zmax=6×1000+4×1200=10800.
故最大获利Z的分布列为:

Z81601020010800
P0.30.50.2
因此,E(Z)=8160×0.3+10200×0.5+10800×0.2=9708
(2)由(Ⅰ)知,一天最大获利超过10000元的概率P1=P(Z>10000)=0.5+0.2=0.7,
由二项分布,3天中至少有1天最大获利超过10000元的概率为:
$P=1-{(1-{P}_{1})}^{3}=0.973$.

点评 本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.

(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)
(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.
(Ⅲ)证明:直线DF⊥平面BEG.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阅读如图所示的程序框图,运行相应的程序,则输出的结果为(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.
(1)求a+b+c的值;
(2)求$\frac{1}{4}$a2+$\frac{1}{9}$b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=3,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x∈R,则“1<x<2”是“|x-2|<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为$\frac{\sqrt{π}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面单位向量,且$\overrightarrow{e}$1•$\overrightarrow{e}$2=$\frac{1}{2}$,若平面向量$\overrightarrow{b}$满足$\overrightarrow{b}$•$\overrightarrow{e}$1=$\overrightarrow{b}$•$\overrightarrow{{e}_{2}}$=1,则|$\overrightarrow{b}$|=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,满足Sn=an+1-n•2n+3-4,n∈N*,且a1,S2,2a3+4成等比数列.
(1)求a1、a2、a3的值.
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,n∈N*,求数列{bn}的通项公式
(3)证明:对一切正整数n,有$\frac{3}{{a}_{1}}$+$\frac{4}{{a}_{2}}$+…+$\frac{n+2}{{a}_{n}}$<1.

查看答案和解析>>

同步练习册答案