| A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
分析 根据函数的奇偶性得出f(x)=2|x|-1=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{{2}^{-x}-1,x<0}\end{array}\right.$,利用单调性求解即可.
解答 解:∵定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,
∴f(-x)=f(x),
m=0,
∵f(x)=2|x|-1=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{{2}^{-x}-1,x<0}\end{array}\right.$,
∴f(x)在(0,+∞)单调递增,
∵a=f(log0.53)=f(log23),b=f(log25),c=f(2m)=f(0)=0,
0<log23<log25,
∴c<a<b,
故选:B
点评 本题考查了对数函数的性质,函数的奇偶性,单调性,计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3} | B. | {2,5} | C. | {1,4,6} | D. | {2,3,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,4) | B. | (2,3] | C. | (-1,2) | D. | (-1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1.5 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com