精英家教网 > 高中数学 > 题目详情
3.计算:(log54)•(log1625).

分析 利用对数的换底公式进行化简即可.

解答 解:(log54)•(log1625)=$\frac{lg4}{lg5}•\frac{lg25}{lg16}$=$\frac{2lg2•2lg5}{lg5•4lg2}$=1.

点评 本题主要考查对数的化简,利用对数的换底公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=f(π-x),且当x∈(-$\frac{π}{2}$,$\frac{π}{2}$)时,f(x)=x+tanx,设a=f(1),b=f(2),c=f(3),则(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:log3$\frac{4\sqrt{27}}{3}$log5[4${\;}^{\frac{1}{2}lo{g}_{2}10}$-(3$\sqrt{3}$)${\;}^{\frac{2}{3}}$-7${\;}^{lo{g}_{7}2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.含有三个实数的集合可表示为{a,$\frac{b}{a}$,1},也可表示为{a2,a+b,0},则a2013+b2014=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义在[-1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0.
(1)判定函数f(x)在[-1,1]的单调性并加以证明;
(2)若$\frac{1}{2}$f(x)≤m2+2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.抛物线y2=2px(p>0)上任一点Q到顶点O的距离与焦点F的距离之比是k,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)的定义域为[0,1],求函数f(2x+1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={y|y=x2-2x,x∈R},B={y|y=-x2+2x+6,x∈R}.
(1)A∩B=[-1,7].
(2)若集合A变为A={x|y=x2-2x,x∈R},其他条件不变,求A∩B.
(3)若集合A、B中元素都为整数,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若点(1,1)在圆(x-a)2+(y+a)2=4的外部,那么a的取值范围是(  )
A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.{-1,1}

查看答案和解析>>

同步练习册答案