精英家教网 > 高中数学 > 题目详情
在3000到8000之间有多少个无重复数字的奇数?
考点:计数原理的应用
专题:排列组合
分析:分两类,一类是以3、5、7为首位的四位奇数,一类是一类是以3、5、7为首位的四位奇数,根据分类计数原理可得答案
解答: 解:分两类;一类是以3、5、7为首位的四位奇数,可分三步完成:先排首位有3种方法,再排个位有4种方法,最后排中间两个数位有8×7种方法,所以共有3×4×8×7=672个.另一类是首位是4或6的四位奇数,也可以3步完成,共有2×5×8×7=560个.
由分类计数原理得共有672+560=1232个.
点评:本题主要考查了分类和分步计数原理,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,A(1,-2),B(a,-1),C(-b,0),若A、B、C三点共线,则
1
a
+
1
b
的最小值是(  )
A、3+2
2
B、4
2
C、6
D、
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(2x+
π
6
)+
3
2
,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)求函数f(x)的对称轴方程及对称中心;
(3)当x∈(0,
π
2
)时,函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个倒立的圆锥,底面半径为10cm,高为15cm,先将一定量的水注入其中,其形成的圆锥高为hcm,底面半径为rcm
(1)求水的体积;
(2)若形成的圆锥的体积恰为原来圆锥体积的一半,求h的值(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB⊥AD,AB⊥BC,∠BCD与∠ADC的平分线相交于AB上的一点E,以AB为直径作圆,则该圆与边DC有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且sinα:sin
α
2
=8:5,则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x,y)是圆C:(x-1)2+(y-1)2=1上的点,则
y+1
x
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在不为零的常数T,使得函数y=f(x)对定义域内的任意x均有f(x+T)=f(x),则称函数y=f(x)为周期函数,其中常数T就是函数的一个周期.
(1)证明:若存在不为零的常数a使得函数y=f(x)对定义域内的任一x均有f(x+a)=-f(x),则此函数是周期函数;
(2)若定义在R上的奇函数y=f(x)满足f(x+1)=-f(x),试探究此函数在区间[-2008,2008]内的零点的最少个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an},是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16
(1)求数列{an}的通项公式
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>30n+400?若存在,求n的最小值;若不存在,说明理由.
(3)若数列{an}和数列{bn}满足等式an=
b1
2
+
b2
22
+
b3
23
+…+
bn
2n
(n为正整数),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案