精英家教网 > 高中数学 > 题目详情

【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.

【答案】
(1)

∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,

∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,

解得:m>﹣


(2)

解:m=1,此时原方程为x2+3x=0,

即x(x+3)=0,

解得:x1=0,x2=﹣3.


【解析】(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.
【考点精析】本题主要考查了因式分解法和求根公式的相关知识点,需要掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知矩形,过平面,再过于点,过于点

Ⅰ)求证:

Ⅱ)若平面于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)

(1)求1路车从A站到D站所走的路程(精确到0.1);
(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算:(3﹣π)0+4sin45°﹣ +|1﹣ |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为

(1)乙投球的命中率

(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)讨论是函数的极大值还是极小值;

(2)过点作曲线的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg乙材料90kg,求在不超过600个工时的条件下,生产产品A和产品B的利润之和的最大值(元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知,且成等差数列.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙和点.作⊙的两条切线,切点分别为且直线的方程为

(1)求⊙的方程

(2)设为⊙上任一点,过点向⊙引切线,切点为试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案