精英家教网 > 高中数学 > 题目详情
12.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,点A是椭圆的右顶点,O为坐标原点,若椭圆上的一点M满足MF1⊥MF2,|MA|=|MO|,则椭圆的离心率为(  )
A.$\frac{\sqrt{10}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{7}}{7}$

分析 过M作MN⊥x轴,交x轴于N,不妨设M在第一象限,从而得到M($\frac{a}{2}$,$\frac{\sqrt{3}}{2}b$),由此利用MF1⊥MF2,能求出椭圆的离心率.

解答 解:∵F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,点A是椭圆的右顶点,O为坐标原点,
椭圆上的一点M满足MF1⊥MF2,|MA|=|MO|,
过M作MN⊥x轴,交x轴于N,不妨设M在第一象限,
∴N是OA的中点,∴M点横坐标为$\frac{a}{2}$,∴M点纵坐标为$\frac{\sqrt{3}}{2}b$,
∴F1(-c,0),F2(c,0),${S}_{△M{F}_{1}{F}_{2}}$=$\frac{1}{2}×2c×\frac{\sqrt{3}}{2}b$=$\frac{\sqrt{3}}{2}bc$,
$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$=($\frac{a}{2}+c$,$\frac{\sqrt{3}}{2}b$)•($\frac{a}{2}-c,\frac{\sqrt{3}}{2}b$)=$\frac{{a}^{2}}{4}-{c}^{2}+\frac{3}{4}{b}^{2}$=0,
∴4c2=a2+3b2=a2+3a2-3c2,∴4a2=7c2,∴2a=$\sqrt{7}c$,
∴椭圆的离心率e=$\frac{c}{a}$=$\frac{2\sqrt{7}}{7}$.
故选:D.

点评 本题考查椭圆的离心率的求法,是中档题,解题时要认真审题,注意直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.对称轴为坐标轴的椭圆与的焦点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),P为椭圆上任意一点,满足|PF1|+|PF2|=4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不过原点O的直线l:y=kx+m与椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求椭圆方程;
(Ⅱ)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率一次为k1、k2,满足4k=k1+k2
(i)当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由;
(ii)求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≤2}\\{x-y≤0}\end{array}\right.$则x+y的最大值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.椭圆$\frac{{x}^{2}}{4}$+y2=1中,以点M(1,$\frac{1}{2}$)为中点的弦所在直线方程是x+2y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=lnx,g(x)=x-$\frac{1}{x}$.
(1)求函数φ(x)=$\frac{5}{4}$f(x)-$\frac{1}{2}$g(x)的极值;
(2)若x≥1时,恒有f(x)≤λg(x)成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}满足:a1=1,an+1=2an(n∈N+),则其前7项的和S7=127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,事件A表示“2名学生全不是男生”,事件B表示“2名学生全是男生”,事件C表示“2名学生中至少有一名是男生”,则下列结论中正确的是(  )
A.A与B对立B.A与C对立
C.B与C互斥D.任何两个事件均不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,已知点A(-1,0),B(1,0),动点P满足:$\overrightarrow{PA}$•$\overrightarrow{PB}$=m(|$\overrightarrow{OP}$•$\overrightarrow{OA}$|2-$\overrightarrow{OB}$2),求动点P的轨迹方程,并根据m的取值讨论方程所表示的曲线类型.

查看答案和解析>>

同步练习册答案