精英家教网 > 高中数学 > 题目详情
18.求方程$x=\sqrt{x+2\sqrt{x+…2\sqrt{x+2\sqrt{3x}}}}$(n重根号)的解.

分析 方程$x=\sqrt{x+2\sqrt{x+…2\sqrt{x+2\sqrt{3x}}}}$(n重根号).可得$x=\sqrt{x+2x}$,两边平方即可得出.

解答 解:∵方程$x=\sqrt{x+2\sqrt{x+…2\sqrt{x+2\sqrt{3x}}}}$(n重根号).
∴$x=\sqrt{x+2x}$,
两边平方可得:x2-3x=0,
解得x=0或3.
经过检验满足原方程,
∴原方程的解为:x=0或3.

点评 本题考查了根式的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.判断以A(4,1),B(1,5),C(-3,2),D(0,-2)为顶点的四边形的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2lnx-$\frac{a}{2}$x2+(2a-1)x(a>0).若?x>0,使得不等式f(x)>3a-2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:2lg5+lg4+ln2-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知幂函数y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)为偶函数,且在(0,+∞)上为减函数.
(1)求解析式;
(2)讨论h(x)=a$\sqrt{f(x)}$-$\frac{b}{xf(x)}$(a,b∈k)的奇偶性;
(3)求满足(t+1)${\;}^{-\frac{n}{3}}$<(3-2t)${\;}^{-\frac{n}{3}}$的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a,b,c分别是△ABC三个角所对的边,若2A=B+C,a2=bc,则△ABC的形状是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,两边之长a+b=8,∠C=60°,则△ABC的面积的最大值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列几种推理中是演绎推理的序号为(  )
A.由20<22,21<32,22<42…猜想2n-1<(n+1)2(n∈N+
B.半径为r的圆的面积s=πr2,单位圆的面积s=π
C.猜想数列$\frac{1}{1×2}$、$\frac{1}{2×3}$、$\frac{1}{3×4}$…的通项为an=$\frac{1}{n(n+1)}$(n∈N+
D.由平面直角坐标系中,圆的方程为(x-a)2+(y-b)2=r2推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)的定义域为R,且满足f(x)是偶函数,f(1-x)=f(1+x),若f(0.5)=9,则f(8.5)等于(  )
A.-9B.9C.-3D.0

查看答案和解析>>

同步练习册答案