精英家教网 > 高中数学 > 题目详情
6.计算:2lg5+lg4+ln2-ln2.

分析 根据公式loga(MN)=logaM+logaN进行计算.

解答 解:原式=2lg5+lg4,
=lg25+lg4,
=lg(25×4),
=2.

点评 本题考查了对数的运算律及对数恒等式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合A={y|y=x2-$\frac{3}{2}$x+1,x∈[$\frac{3}{4}$,2]},B={x|x+m2≥1},若A⊆B,则实数m的取值范围为(  )
A.(-∞,-$\frac{3}{4}$]∪[$\frac{3}{4}$,+∞)B.[-$\frac{3}{4}$,$\frac{3}{4}$]C.(-∞,-2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,cosA•cosB•cosC=0,则△ABC是(  )
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tanα=2,则cos2α+1=(  )
A.1B.$\frac{5}{4}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=2my(m>0)的焦点为F,直线y=x-2与x轴的交点Q到F的距离为$\frac{\sqrt{17}}{2}$.
(1)求m的值;
(2)设P为直线y=x-2上的动点,过P作抛物线C的切线,切点分别为A,B,求△ABP面积的最小值,以及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解方程组:$\left\{\begin{array}{l}{1+cos2α+cos2β=0}\\{sin2α+sin2β=0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求方程$x=\sqrt{x+2\sqrt{x+…2\sqrt{x+2\sqrt{3x}}}}$(n重根号)的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x,求函数f(x)在R上的最大值及取得最大值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正整数a,b,c满足2a+4b+7c≤2abc,求a+b+c的最小值.

查看答案和解析>>

同步练习册答案