精英家教网 > 高中数学 > 题目详情

分别是椭圆+=1()的左、右焦点,是椭圆的上顶点,是直线与椭圆的另一个交点,=60°.
(1)求椭圆的离心率;
(2)已知△的面积为40,求a, b 的值.

(1) ; (2)

解析试题分析:(1)易知A为短轴上的一个顶点,因为=60°,所以在△AOF2中,a=AF2=2c,
所以椭圆的离心率为
(2)因为=60°,所以直线的斜率为,所以直线的方程为,与椭圆方程联立得:,设,因为,所以0+x0=,所以x0=,y0=,
所以=40…………………………………………………………①
………………………………②
①②联立解得:
考点:本题考查椭圆的简单性质;直线与椭圆的综合问题。
点评:研究直线与椭圆的综合问题,通常有两种思路:一是转化为研究方程组的解的问题,利用直线方程与椭圆方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
求焦点为(-5,0)和(5,0),且一条渐近线为的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

填空题(本大题有2小题,每题5分,共10分.请将答案填写在答题卷中的横线上):
(Ⅰ)函数的最小值为      .
(Ⅱ)若点在曲线上,点在曲线上,点在曲线上,则的最大值是      .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆 及直线,当直线和椭圆有公共点时.
(1)求实数的取值范围;
(2)求被椭圆截得的最长的弦所在的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的离心率,直线与椭圆交于不同的两点,以线段为直径作圆,圆心为
(Ⅰ)求椭圆的方程;
(Ⅱ)当圆轴相切的时候,求的值;
(Ⅲ)若为坐标原点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知双曲线的离心率为,且过点P().
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A,B,且  
(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)点为椭圆内的一定点,过P点引一直线,与椭圆相交于两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;

查看答案和解析>>

同步练习册答案