精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1的所有棱长都相等,且AA1⊥底面ABC,D为CC1的中点,AB1与A1B相交于点O,连结OD.
(1)求证:OD∥平面ABC;
(2)求证:AB1⊥平面A1BD.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)作OE⊥AB,交AB于E,连结CE,由已知条件推导出OECD是长方体,由此能证明OD∥平面ABC.
(2)由ABB1A1是正方形,得A1B ⊥AB1,由已知条件推导出CE⊥平面AA1B,从而OD⊥平面AA1B,进而AB1⊥DO,由此能证明AB1⊥平面A1BD.
解答: 证明:(1)作OE⊥AB,交AB于E,连结CE,
∵三棱柱ABC-A1B1C1的所有棱长都相等,且AA1⊥底面ABC,
D为CC1的中点,AB1与A1B相交于点O,
∴O是A1B的中点,E是AB中点,
OE
.
CD
,∴OECD是长方体,
∴OD∥CE,
∵OD不包含于平面ABC,CE?平面ABC,
∴OD∥平面ABC.
(2)由题意知ABB1A1是正方形,∴A1B ⊥AB1
由(1)知CE⊥AB,又AA1⊥面ABC,CE?面ABC,
∴CE⊥AA1,又AA1∩AB=A,
∴CE⊥平面AA1B,∵DO∥CE,∴OD⊥平面AA1B,
又AB1?平面AA1B,∴AB1⊥DO,
∵DO∩A1B=O,∴AB1⊥平面A1BD.
点评:本题考查直线与平面平行的证明,考查直线与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中是假命题的是(  )
①过平面外一点有且只有一条直线与该平面垂直;
②过平面外一点有且只有一条直线与该平面平行;
③如果两个平行平面和第三个平面相交,那么所得的两条交线平行.
A、①B、②C、③D、④

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
3+4i
1+2i
的共轭复数
z
=(  )
A、
11
5
-
2
5
i
B、
2
5
-
11
5
i
C、
11
5
+
2
5
i
D、
2
5
+
11
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx,其中常数a∈R.
(1)当a=4时,求函数f(x)的极值点;
(2)令F(x)=f(x)+(a+2)x,若函数F(x)在区间[2,+∞)上单调递增,求a的取值范围;
(3)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)
x-x0
>0在D内恒成立,则称P为函数y=h(x)的“特殊点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“特殊点”的横坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)若离心率为
5
3
,短轴一个端点到右焦点距离为3,求椭圆C的方程;
(2)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;
(3)设直线AB与x轴、y轴分别交于点M,N,求证:
a2
|ON|2
+
b2
|OM|2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在c轴负半轴上有一点B,满足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求椭圆D的离心率;
(Ⅱ)若过A、B、F2三点的圆C恰好与直线l:x-
3
y-3=0相切,求圆C方程及椭圆D的方程;
(Ⅲ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足
OM
+
ON
=t
OP
(O为坐标原点),求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=2,cosB=
3
5

(1)若b=4,求sinA的值;
(2)若△ABC的面积S△ABC=4,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=4x,A(x1,y1),B(x2,y2)在抛物线上.(A,B都不是顶点)
(1)求证:过点A的切线方程是y1y=2(x+x1).
(2)设以A,B为切点的切线分别为l1,l2,H为l1与l2的交点,若AB经过焦点F.
①证明:l1⊥l2
②证明:H点的轨迹是C的准线.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-
2
3
,其通项an满足an=-
1
an-1+2
(n≥2)
(1)计算a1,a2,a3,a4
(2)猜想an的表达式并用数学归纳法证明.

查看答案和解析>>

同步练习册答案