精英家教网 > 高中数学 > 题目详情
1.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,则g($\frac{1}{2016}$)+g($\frac{2}{2016}$)+…+g($\frac{2015}{2016}$)=(  )
A.2016B.2015C.4030D.1008

分析 由题意对已知函数求两次导数可得图象关于点($\frac{1}{2}$,1)对称,即f(x)+f(1-x)=2,即可得到结论.

解答 解:函数g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,函数的导数g′(x)=x2-x+3,
g″(x)=2x-1,
由g″(x0)=0得2x0-1=0
解得x0=$\frac{1}{2}$,而g($\frac{1}{2}$)=1,
故函数g(x)关于点($\frac{1}{2}$,1)对称,
∴g(x)+g(1-x)=2,
故设g($\frac{1}{2016}$)+g($\frac{2}{2016}$)+…+g($\frac{2015}{2016}$)=m,
则g($\frac{2015}{2016}$)+g($\frac{2014}{2016}$)+…+g($\frac{1}{2016}$)=m,
两式相加得2×2015=2m,
则m=2015.
故选:B.

点评 本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.求和的过程中使用了倒序相加法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线ρ:x2=4y,P(x0,y0)为抛物线ρ上的点,若直线l经过点P且斜率为$\frac{{x}_{0}}{2}$,则称直线l为点P的“特征直线”.设x1、x2为方程x2-ax+b=0(a,b∈R)的两个实根,记r(a,b)=$\left\{\begin{array}{l}{|{x}_{1}|,|{x}_{1}|≥|{x}_{2}|}\\{|{x}_{2}|,|{x}_{1}|<|{x}_{2}|}\end{array}\right.$.
(1)求点A(2,1)的“特征直线”l的方程
(2)己知点G在抛物线ρ上,点G的“特征直线”与双曲线$\frac{{x}^{2}}{4}-{y}^{2}=1$经过二、四象限的渐进线垂直,且与y轴的交于点H,点Q(a,b)为线段GH上的点.求证:r(a,b)=2
(3)已知C、D是抛物线ρ上异于原点的两个不同的点,点C、D的“特征直线”分别为l1、l2,直线l1、l2相交于点M(a,b),且与y轴分别交于点E、F.求证:点M在线段CE上的充要条件为r(a,b)=$\frac{{x}_{c}}{2}$(其中xc为点C的横坐际).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)的图象在y轴左侧的第一个最高点为M,点M在x,y轴上的射影分别为M1,M2,O为坐标原点,四边形OM1MM2的面积为$\frac{5π}{3}$.
(1)求ω的值;
(2)求函数f(x)在区间[-$\frac{π}{2}$,0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数z=$\frac{(1+i)^{2}}{1+{i}^{2015}}$=-1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等差数列{an}的前n项和为Sn,且S5=4S3,a3n=3an+2
(1)求数列{an}的通项公式;
(2)设数列{bn}满足22n-1bn=an-1,其前n项和为Tn,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若sinx-2cosx=$\sqrt{5}$,则tanx=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(x,-1)$,且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a-2\overrightarrow b}|$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=asinx+bcosx(其中ab≠0)且对任意的x∈R,有f(x)≤f($\frac{π}{4}$),给出以下命题:
①a=b;
②f(x+$\frac{π}{4}$)为偶函数;
③函数y=f(x)的图象关于点($\frac{5π}{4}$,0)对称;
④函数y=f′(x)的图象可由函数y=f(x)的图象向左平移$\frac{π}{2}$得到;
⑤函数f(x)在y轴右侧的图象与直线y=$\frac{1}{2}a$的交点按横坐标从小到大依次为P1,P2,P3,P4,…,则|P2P4|=2π.
其中正确命题的序号是①②④⑤.(将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,欲使输出的S>11,则输入整数n的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案