分析 (1)由题意,设M(x,y),则y=2,可得2x=$\frac{5π}{3}$,解得x=$\frac{5π}{6}$,可得:ω×$\frac{5π}{6}$+$\frac{π}{6}$=$\frac{π}{2}$,即可解得ω的值.
(2)由(1)可得f(x)=2sin($\frac{2}{5}$x+$\frac{π}{6}$),由x∈[-$\frac{π}{2}$,0],可得:$\frac{2}{5}$x+$\frac{π}{6}$∈[-$\frac{π}{30}$,$\frac{π}{6}$],利用正弦函数的图象和性质即可解得函数f(x)在区间[-$\frac{π}{2}$,0]上的最值.
解答 解:(1)由题意,设M(x,y),则y=2,2x=$\frac{5π}{3}$,解得x=$\frac{5π}{6}$,
可得:ω×$\frac{5π}{6}$+$\frac{π}{6}$=$\frac{π}{2}$,解得ω=$\frac{2}{5}$.
(2)由(1)可得f(x)=2sin($\frac{2}{5}$x+$\frac{π}{6}$),
∵x∈[-$\frac{π}{2}$,0],可得:$\frac{2}{5}$x+$\frac{π}{6}$∈[-$\frac{π}{30}$,$\frac{π}{6}$],
∴f(x)=2sin($\frac{2}{5}$x+$\frac{π}{6}$)∈[-2sin$\frac{π}{30}$,1].
故函数f(x)在区间[-$\frac{π}{2}$,0]上的最大值为1,最小值为-2sin$\frac{π}{30}$.
点评 本题考查由y=Asin(ωx+φ)的图象与性质确定其解析式,考查正弦函数的图象和性质,考查了数形结合思想的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{257}{128}$ | B. | $\frac{513}{256}$ | C. | $\frac{2049}{512}$ | D. | $\frac{2049}{1024}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 2015 | C. | 4030 | D. | 1008 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向左平移$\frac{π}{3}$个单位 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com