精英家教网 > 高中数学 > 题目详情
1.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x-2y+1=0,若g(x)=$\frac{x}{f(x)}$.则g′(1)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{3}{2}$D.2

分析 求函数的导数,利用导数的几何意义进行求解即可.

解答 解:∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x-2y+1=0,
∴f(1)=1,f′(1)=$\frac{1}{2}$,
∵g(x)=$\frac{x}{f(x)}$,
∴g′(x)=$\frac{f(x)-xf′(x)}{[f(x)]^{2}}$,
则g′(1)=$\frac{f(1)-f′(1)}{[f(1)]^{2}}$=$\frac{1-\frac{1}{2}}{1}$=$\frac{1}{2}$,
故选:A.

点评 本题主要考查导数的几何意义,以及直线平行的斜率关系,求函数的导数利用导数的几何意义是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知全集∪=R,集合A={x|(x-1)(x+2)>0},则∁uA=(  )
A.{x|-2<x<1}B.{x|-2≤x≤1}C.{x|x<-2或x>1}D.{x|x≤-2或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在(1+x)3+(1+x)4+…+(1+x)2015的展开式中x3的系数等于(  )
A.C${\;}_{2015}^{4}$B.C${\;}_{2016}^{4}$C.2C${\;}_{2016}^{3}$D.2C${\;}_{2015}^{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线ρ:x2=4y,P(x0,y0)为抛物线ρ上的点,若直线l经过点P且斜率为$\frac{{x}_{0}}{2}$,则称直线l为点P的“特征直线”.设x1、x2为方程x2-ax+b=0(a,b∈R)的两个实根,记r(a,b)=$\left\{\begin{array}{l}{|{x}_{1}|,|{x}_{1}|≥|{x}_{2}|}\\{|{x}_{2}|,|{x}_{1}|<|{x}_{2}|}\end{array}\right.$.
(1)求点A(2,1)的“特征直线”l的方程
(2)己知点G在抛物线ρ上,点G的“特征直线”与双曲线$\frac{{x}^{2}}{4}-{y}^{2}=1$经过二、四象限的渐进线垂直,且与y轴的交于点H,点Q(a,b)为线段GH上的点.求证:r(a,b)=2
(3)已知C、D是抛物线ρ上异于原点的两个不同的点,点C、D的“特征直线”分别为l1、l2,直线l1、l2相交于点M(a,b),且与y轴分别交于点E、F.求证:点M在线段CE上的充要条件为r(a,b)=$\frac{{x}_{c}}{2}$(其中xc为点C的横坐际).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.-30°+k•360°(k∈Z)表示(  )角.
A.第一象限B.第三象限C.第四象限D.界限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“m≥-8”是“圆x2+y2-2x+m=0面积不大于9π”的必要不充分条件(选填“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.Sn是等比数列{an}的前n项和,若S4,S3,S5成等差数列.则{an}的公比q的值为(  )
A.$\frac{1}{2}$B.2C.$-\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)的图象在y轴左侧的第一个最高点为M,点M在x,y轴上的射影分别为M1,M2,O为坐标原点,四边形OM1MM2的面积为$\frac{5π}{3}$.
(1)求ω的值;
(2)求函数f(x)在区间[-$\frac{π}{2}$,0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(x,-1)$,且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a-2\overrightarrow b}|$=5.

查看答案和解析>>

同步练习册答案