精英家教网 > 高中数学 > 题目详情
12.把编号为1,2,3,4,5,6,7的7张电影票分给甲、乙、丙、丁、戊五个人,每人至少一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为1200.

分析 根据题意,分2步进行分析:先将7张电影票分成5组,其中2组每组2张,其余三组每组1张,由列举法可得分组方法数目,再将分好的5组全排列,对应甲、乙、丙、丁、戊五个人,由排列数公式计算可得其情况数目,进而由分步计数原理计算可得答案.

解答 解:根据题意,将7张电影票分给五个人,每人至少一张,至多分两张,
则其中2人2张,其他3人各1张,
则需要先将7张电影票分成5组,其中2组每组2张,其余三组每组1张,
有①12、34、5、6、7;②12、3、45、6、7;③12、3、4、56、7;④12、3、4、5、67;
⑤1、23、45、6、7;⑥1、23、4、56、7;⑦1、23、4、5、67;
⑧1、2、34、56、7,⑨1、2、34、5、67;⑩1、2、3、45、67;
共10种情况;
再将分好的5组全排列,对应甲、乙、丙、丁、戊五个人,有A55=120种情况;
则不同分法有10×120=1200种;
故答案为:1200.

点评 本题考查排列、组合的应用,关键是正确将7张电影票分成5组.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=(1,-1),\overrightarrow b=(x,2)$,且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a+\overrightarrow b}|$的值为(  )
A.$\sqrt{2}$B.$\sqrt{7}$C.$2\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-a|.
(1)若a=1,解不等式f(x)≥4-|x+1|;
(2)若不等式f(x)≤1的解集为$[{0,2}],\frac{1}{m}+\frac{1}{2n}=a({m>0,n>0})$,求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,则$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也摸出新球的概率为(  )
A.$\frac{3}{5}$B.$\frac{5}{9}$C.$\frac{2}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数在其定义域上既是奇函数又是减函数的是(  )
A.f(x)=-x|x|B.f(x)=xsinxC.$f(x)=\frac{1}{x}$D.$f(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如图:
(1)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
及格(≥60)不及格合计
很少使用手机20727
经常使用手机101323
合计302050
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为P1,P2,P2=0.4,若P1-P2≥0.3,则此二人适合结为学习上互帮互助的“师徒”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“师徒”?
参考公式及数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥K00.100.050.025
K02.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},则∁UB=(  )
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场搞促销,规定顾客购物达到一定金额可抽奖,最多有三次机会,每次抽中,可依次分别获得20元、30元、50元奖金,顾客每次抽中后,可以选择带走所得奖金,结束抽奖;也可以选择继续抽奖,若有任何一次没有抽中,则连同前面所得奖金也全部归零,结束抽奖,设顾客甲第一次、第二次、第三次抽中的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选择继续抽奖的概率均为$\frac{1}{2}$,且每次是否抽中互不影响.
(Ⅰ)求顾客甲第一次抽中,但所得奖金为零的概率;
(Ⅱ)设该顾客所得奖金总数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案