精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,则$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

分析 向量的数量积的运算和向量模即可求出答案.

解答 解:∵$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$,
∴2$\overrightarrow{a}$•$\overrightarrow{b}$=1+4-5=0,
∴|2$\overrightarrow{a}$-$\overrightarrow{b}$|2=4|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2-4$\overrightarrow{a}$•$\overrightarrow{b}$=4+4=8,
∴|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{2}$
故答案为:$2\sqrt{2}$

点评 本题考查了向量的数量积的运算和向量模的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知实数x、y满足$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}}\right.$,则z=2x+y-6的最小值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在数列{an}中,a1=1,其前n项和为sn,且${a_n}=\frac{2s_n^2}{{2{s_n}-1}}$(n≥2)
(1)证明$\left\{{\frac{1}{s_n}}\right\}$是等差数列,并求数列$\left\{{\frac{1}{s_n}}\right\}$的前n项和Pn
(2)若${b_n}=\frac{s_n}{2n+1}+\frac{2^n}{s_n}$求数列的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x,y满足约束条件$\left\{\begin{array}{l}x+y≤2\\ 2x-y≥1\\ 2x+5y-1≥0\end{array}\right.$,则2x-3y的最大值为(  )
A.-1B.1C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E,F分别为PD,BC的中点.
(1)求证:AE⊥PC;
(2)G为线段PD上一点,若FG∥平面AEC,求$\frac{PG}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(4,0),抛物线C:y2=2px(0<p<4)的准线为l,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则p=$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.把编号为1,2,3,4,5,6,7的7张电影票分给甲、乙、丙、丁、戊五个人,每人至少一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为1200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=(x+1)ex则对任意的m∈R,函数F(x)=f(f(x))-m的零点个数至多有(  )
A.3个B.4个C.6个D.9个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某程序框图如图所示,分别输入下列选项中的四个函数,则可以输出的函数是(  )
A.f(x)=x2+1B.f(x)=sinxC.f(x)=2xD.f(x)=log2|x|

查看答案和解析>>

同步练习册答案