精英家教网 > 高中数学 > 题目详情
8.若x,y满足约束条件$\left\{\begin{array}{l}x+y≤2\\ 2x-y≥1\\ 2x+5y-1≥0\end{array}\right.$,则2x-3y的最大值为(  )
A.-1B.1C.7D.9

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:设z=2x-3y得y=$\frac{2}{3}x-\frac{z}{3}$,
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=$\frac{2}{3}x-\frac{z}{3}$,由图象可知当直线y=$\frac{2}{3}x-\frac{z}{3}$,
过点B时,直线y=$\frac{2}{3}x-\frac{z}{3}$截距最小,此时z最大,
由$\left\{\begin{array}{l}{x+y=2}\\{2x+5y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,即B(3,-1),
此时z=2×3-3×(-1)=6+3=9,
∴目标函数z=2x-3y最大值是9.
故选D.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知复数z满足$\frac{11+2i}{z}$=1+2i(i为虚数单位),则z的虚部为(  )
A.4B.4iC.-4D.-4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=x2+ax+b(a,b∈R)的两个零点为x1,x2,若|x1|+|x2|≤2,则(  )
A.|a|≥1B.b≤1C.|a+2b|≥2D.|a+2b|≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“|a|>|b|”是“lna>lnb”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-a|.
(1)若a=1,解不等式f(x)≥4-|x+1|;
(2)若不等式f(x)≤1的解集为$[{0,2}],\frac{1}{m}+\frac{1}{2n}=a({m>0,n>0})$,求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$y={sin^2}({\frac{3π}{2}-x})+sin({x+π})$的值域为[-1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,则$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数在其定义域上既是奇函数又是减函数的是(  )
A.f(x)=-x|x|B.f(x)=xsinxC.$f(x)=\frac{1}{x}$D.$f(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)若从这7天随机抽取两天,求至少有1天参加抽奖人数超过10的概率;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

同步练习册答案