分析 (1)证明:AE⊥平面PCD,即可证明AE⊥PC;
(2)取AP中点M,连接MF,MG,ME,利用平面MFG∥平面AEC,又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,MG∥AE,即可求$\frac{PG}{PD}$的值.
解答
(1)证明:∵AP⊥平面ABCD,∴AP⊥CD,
在矩形ABCD中,CD⊥AD,
又AP∩AD=A,∴CD⊥平面PAD,
∵AE?平面PAD,∴CD⊥AE,
在△PAD中,E为PD中点,PA=AD,∴AE⊥PD,
又CD∩PD=D,CD,PD?平面PCD,∴AE⊥平面PCD,
∵PC?平面PCD,∴AE⊥PC
(2)解:$\frac{PG}{PD}=\frac{1}{4}$
取AP中点M,连接MF,MG,ME.
在△PAD中,M,E分别为PA,PD的中点
则ME为△PAD的中位线∴$ME∥AD,ME=\frac{1}{2}AD$,
又$FC∥AD,FC=\frac{1}{2}AD$,∴ME∥FC,ME=FC,∴四边形MECF为平行四边形,∴MF∥EC,
又MF?平面AEC,EC?平面AEC,∴MF∥平面AEC,
又FG∥平面AEC,MF∩FG=F,MF,FG?平面MFG,∴平面MFG∥平面AEC,
又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,∴MG∥AE,
又∵M为AP中点,∴G为PE中点,
又E为PD中点,∴$PG=\frac{1}{4}PD$,即$\frac{PG}{PD}=\frac{1}{4}$.
点评 本题考查线面垂直的判定与性质,考查线面、面面平行,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 16π | D. | 2$\sqrt{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 及格(≥60) | 不及格 | 合计 | |
| 很少使用手机 | 20 | 7 | 27 |
| 经常使用手机 | 10 | 13 | 23 |
| 合计 | 30 | 20 | 50 |
| P(K2≥K0) | 0.10 | 0.05 | 0.025 |
| K0 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | -21 | C. | 441 | D. | -441 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com