精英家教网 > 高中数学 > 题目详情
10.某程序框图如图所示,分别输入下列选项中的四个函数,则可以输出的函数是(  )
A.f(x)=x2+1B.f(x)=sinxC.f(x)=2xD.f(x)=log2|x|

分析 根据题意,得该程序框图输出的函数应满足:①是偶函数,②存在零点;由此判定各选项中的函数是否满足条件即可.

解答 解:模拟程序框图的运行过程,得:
该程序框图输出的函数应满足条件:①f(x)-f(-x)=0,是偶函数,②存在零点;
对于A,f(x)=x2+1不存在零点,不能输出;
对于B,f(x)=sinx不是偶函数,不能输出;
对于C,f(x)=2x,不是偶函数,不能输出;
对于D,f(x)=log2|x|,是偶函数,且存在零点0,∴满足条件①②,可以输出;
故选:D.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,得出解题的关键是输出的函数应满足的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$|\overrightarrow a+\overrightarrow b|=\sqrt{5}$,则$|2\overrightarrow a-\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},则∁UB=(  )
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)若从这7天随机抽取两天,求至少有1天参加抽奖人数超过10的概率;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在公差大于0的等差数列{an}中,2a7-a13=1,且a1,a3-1,a4+9成等比数列,则数列{(-1)n-1an}的前21项和为(  )
A.21B.-21C.441D.-441

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)={e^x}-\frac{1}{2}{x^2}$.设l为曲线y=f(x)在点P(x0,f(x0))处的切线,其中x0∈[-1,1].
(Ⅰ)求直线l的方程(用x0表示);
(Ⅱ)设O为原点,直线x=1分别与直线l和x轴交于A,B两点,求△AOB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场搞促销,规定顾客购物达到一定金额可抽奖,最多有三次机会,每次抽中,可依次分别获得20元、30元、50元奖金,顾客每次抽中后,可以选择带走所得奖金,结束抽奖;也可以选择继续抽奖,若有任何一次没有抽中,则连同前面所得奖金也全部归零,结束抽奖,设顾客甲第一次、第二次、第三次抽中的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选择继续抽奖的概率均为$\frac{1}{2}$,且每次是否抽中互不影响.
(Ⅰ)求顾客甲第一次抽中,但所得奖金为零的概率;
(Ⅱ)设该顾客所得奖金总数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2-bx+c在x=1处取得最小值-1.
(1)解不等式|f(x)|+|f(-x)|≥6|x|;
(2)若实数a满足|x-a|<1,求证:|f(x)-f(a)|<2|a|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.成等差数列的三个正数的和等于12,并且这三个数分别加上1,4,11后成为等比数列{bn}中的b2,b3,b4,则数列{bn}的通项公式为(  )
A.bn=2nB.bn=3nC.bn=2n-1D.bn=3n-1

查看答案和解析>>

同步练习册答案