精英家教网 > 高中数学 > 题目详情
17.设M=sinθ+cosθ,-1<M<1,则角θ是第一或三象限角.

分析 先把三角函数式利用两角和的正弦公式化成标准形式,然后根据M的范围求出角θ的范围,根据θ的范围判断角θ所在的象限.

解答 解:M=sinθ+cosθ=$\sqrt{2}sin(θ+\frac{π}{4})$
∵-1<M<1,∴$-1<\sqrt{2}sin(θ+\frac{π}{4})<1$
∴$-\frac{\sqrt{2}}{2}<sin(θ+\frac{π}{4})<\frac{\sqrt{2}}{2}$
∴$kπ-\frac{π}{4}<θ+\frac{π}{4}<kπ+\frac{π}{4}$,k∈Z.
解得:$kπ<θ<kπ+\frac{π}{2}$,k∈Z.
所以角θ是第一或第三象限角.

点评 本题考查了三角函数式的化简及解三角不等式,解三角不等式可以结合三角函线和三角函数的图象求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若数列{an}为等差数列,数列{2${\;}^{{a}_{n}}$}为等比数列;若数列{an}为等比数列,且an>0,则数列{lgan}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a、b、c∈R*,求证:
(1)(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)≥9;
(2)(a+b+c)($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{a+c}$)≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=$\frac{-2{m}^{2}-3m+2}{{m}^{2}+1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{3x+y-6≥0}\\{y≤3}\end{array}\right.$,则z=-2x+y的最小值为(  )
A.-7B.-6C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某流程图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A.f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$B.f(x)=$\frac{cosx}{x}$(-$\frac{π}{2}$$<x<\frac{π}{2}$)
C.f(x)=$\frac{|x|}{x}$D.f(x)=x2ln(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列{an}中,a3-2a2=2,且5a4是12a3和2a5的等差中项,则{an}的公比为(  )
A.2B.3C.2或3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“a<1”是“x+$\frac{1}{x+1}$≥a对x∈(-1,+∞)恒成立”的(  )
A.充分且不必要条件B.必要且不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当n=5时,执行如图所示的程序框图,输出的S值是(  )
A.7B.10C.11D.16

查看答案和解析>>

同步练习册答案