精英家教网 > 高中数学 > 题目详情
已知函数
(1)若方程内有两个不等的实根,求实数m的取值范围;(e为自然对数的底数)
(2)如果函数的图象与x轴交于两点.求证:(其中正常数).
(1)(2)

试题分析:(1)方程内有两个不等的实根,可转化为函数的图象与 有两个不同的交点,可以利用导数研究函数 上的单调性与极值并结合边界值来确定实数m的取值范围;
(2)由函数的图象与x轴交于两点知方程 
有两根    
因为 ,
所以   
 
 
只需证明:上恒成立即可.
试题解析:(1)由
求导数得到:
,故有唯一的极值点
,且知
上有两个不等实根需满足:

故所求m的取值范围为.                             (6分)
(2)有两个实根

两式相减得到:
于是


,故
要证:,只需证:
只需证:
,则
只需证明:上恒成立.

于是由可知.故知
上为增函数,则
从而可知,即(*)式成立,从而原不等式得证.         (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点是曲线上不同的两点,点为线段的中点,过点轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)若对于任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数的图象在处的切线与轴平行,求的值;
(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,△OAB是边长为2的正三角形,记△OAB位于直线左侧的图形的面积为,则

(1)函数的解析式为_______;
(2)函数的图像在点P(t0,f(t0))处的切线的斜率为,则t0=____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线在点处的切线方程为
(1)求的值;
(2)如果当,且时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三次函数的图象如图所示,则(      )
A.-1B.2C.-5D.-3

查看答案和解析>>

同步练习册答案