精英家教网 > 高中数学 > 题目详情
已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=3,BC=2,P是腰DC上的动点,则|
PA
+3
PB
|的最小值为(  )
A、3B、6C、9D、12
考点:向量在几何中的应用
专题:平面向量及应用
分析:先用向量
DA
DC
CB
把涉及到的向量
PA
PB
表示出来,然后根据|
a
|=
a
2
进行转化,结合式子的特点求出最小值.
解答: 解:∵AD∥BC,∠ADC=90°,AD=3,BC=2,
CB
DC
DA
DC
DA
CB

DP
=x
DC
,则
PC
=(1-x)
DC

PA
=
DA
-
DP
=
DA
-x
DC
PB
=
PC
+
CB
=(1-x)
DC
+
CB

∴(
PA
+3
PB
2=(
DA
+3
CB
+(3-4x)
DC
2=
DA
2
+9
CB
2
+(3-4x)2
DC
2
+6
DA
CB
+2(3-4x)
DA
DC
+6(3-4x)
CB
DC

DA
CB
=6cos0°=6
DA
DC
=
CB
DC
=0

∴(
PA
+3
PB
2=81+(3-4x)2
DC
2
,当3-4x=0时,(
PA
+3
PB
2min=81,
∴|
PA
+3
PB
|min=
(
PA
+3
PB
)2
min=9.
故选C
点评:利用模长已知、夹角已知的两个向量为基底表示出相关的向量,然后将问题转化为求函数的最值问题来解决是本题的总的思路.本题也可以通过建立直角坐标系解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是(
4
,π),则点P横坐标的取值范围为(  )
A、(-1,-
1
2
B、(-
3
2
,-1)
C、(0,1)
D、(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=(
an+1
4
)2
(an>0),则数列{an}的通项an=(  )
A、2n-1
B、3n2-2n
C、4n+6
D、5n2+7n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则(  )
A、f(2)>e2f(0),f(2011)>e2011f(0)
B、f(2)<e2f(0),f(2011)>e2011f(0)
C、f(2)>e2f(0),f(2011)<e2011f(0)
D、f(2)<e2f(0),f(2011)<e2011f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(-1,1),
b
=(2,k),有以下命题:
①k=-2是
a
b
的充要条件;
②k=2是
a
b
的充要条件;
③若k=-1,则
a
b
=-3;
④若k=-1,则|
a
|=|
b
|;
⑤若k=-1,则<
a
b
>=120°.
则下列命题正确的是(  )
A、①②③B、①②④
C、①②⑤D、②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次独立性检验中,有300人按性别和是否色弱分类如下表:
正常 130 120
色弱 20 30
由此表计算得统计量K2=(  )(参考公式:K2=
(ad-bc)2(a+b+c+d)
(a+b)(a+c)(b+d)(c+d)
A、2B、3C、2.4D、3.6

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC一定是(  )
A、钝角三角形
B、直角三角形
C、锐角三角形
D、形状不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

从某开发区随机抽取10个小型企业,获得第i个小型企业的月收入xi(单位:万元)与月利润yi(单位:万元)的数据资料,算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
x
 
2
i
=720.
(Ⅰ)求小型企业的月利润y对月收入x的线性回归方程y=bx+a
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该开发区某小型企业月收入为20万元,预测该小型企业的月利润.
附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
y
=
b
x+
a
y.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a2+a9=5,则3a5+a7的值为
 

查看答案和解析>>

同步练习册答案