精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,已知a2+a9=5,则3a5+a7的值为
 
考点:等差数列的性质
专题:等差数列与等比数列
分析:根据等差数列的通项公式,建立条件关系即可得到结论.
解答: 解:在等差数列{an}中,若a2+a9=5,则2a1+9d=5,
则3a5+a7=4a1+18d=2(2a1+9d)=2×5=10,
故答案为:10
点评:本题主要考查等差数列的应用,利用等差数列的通项公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=3,BC=2,P是腰DC上的动点,则|
PA
+3
PB
|的最小值为(  )
A、3B、6C、9D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos
x
2
3
sin
x
2
+cos
x
2
)-1,x∈R.
(Ⅰ)求f(
π
3
)的值;
(Ⅱ)设α∈(0,
π
2
),β∈(
π
3
π
2
),f(α)=2,f(β)=
8
5
,求f(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},Sn为其前n项和,a5=6,S6=18,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•3n,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

从M(2,2)射出一条光线,经过x轴反射后过点N(-8,3),求反射点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6
(1)求{an}的通项公式an
(2)若数若数列{bn}满足:b1=
1
a1
,b2=
1
a1
+
1
a2
,b3=
1
a1
+
1
a2
+
1
a3
,bn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,设数列{bn}的前n项和为Tn,求证:Tn>2n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
2
,an=4an-1+1(n≥2).
(1)求a1+a2+a3
(2)令bn=an+
1
3
,求证数列{bn}是等比数列;
(3)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

根据以下算法的程序,画出其相应的算法流程图,并指明该算法的目的及输出结果.
n=1
S=0
Do
S=S+n
n=n+1
Loop while S≤2010
输出n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
(1-i)2+3(1+i)
2-i

(1)求z的共轭复数
.
z

(2)若az+b=1-i,求实数a,b的值.

查看答案和解析>>

同步练习册答案