精英家教网 > 高中数学 > 题目详情
8.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,且双曲线的一个焦点在抛物线y2=20x的准线上,则双曲线的方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

分析 由抛物线标准方程易得其准线方程为x=-5,可得双曲线的左焦点为(-5,0),再根据焦点在x轴上的双曲线的渐近线方程平行于直线l:y=2x+10,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.

解答 解:因为抛物线y2=20x的准线方程为x=-5,所以由题意知,点F(-5,0)是双曲线的左焦点,
所以a2+b2=c2=25,①
又双曲线的一条渐近线平行于直线l:y=2x+10,所以$\frac{b}{a}$=2,②
由①②解得a2=5,b2=20,
所以双曲线的方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.
故答案为:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

点评 本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.${∫}_{2}^{4}$$\frac{{x}^{3}-3{x}^{2}+5}{{x}^{2}}$dx的值为(  )
A.1B.$\frac{1}{4}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的通项公式为an=4n-1,
(1)求数列{an}前n项的和为Sn
(2)令bn=$\frac{S_n}{n}$,求数列{2nbn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.sin25°cos35°+cos25°sin35°=(  )
A.$\frac{\sqrt{3}}{2}$B.1C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x与y之间的几组数据如表:则由表数据所得线性回归直线必过点(4.5,3.5).
x3456
y2.5344.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)=1-|1-(x-m)2|关于y轴对称,记a=f(m+2),b=f(log5$\frac{1}{2}$),c=f(e${\;}^{\frac{1}{2}}}$),则a,b,c的大小关系是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=3sin(x-$\frac{π}{3}$)的图象作以下哪个平移得到函数y=3sinx的图象(  )
A.向左平移$\frac{π}{3}$B.向左平移$\frac{π}{6}$C.向右平移$\frac{π}{3}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x+1,求函数f(x)的解析式,并画出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在四面体ABCD中,AB=CD,AC=BD,AD=BC,以下判断错误的是(  )
A.该四面体的三组对棱的中点连线两两垂直
B.该四面体的外接球球心与内切球球心重合
C.该四面体的各面是全等的锐角三角形
D.该四面体中任意三个面两两所成二面角的正弦值之和为1

查看答案和解析>>

同步练习册答案