精英家教网 > 高中数学 > 题目详情
13.已知定义在R上的函数f(x)=1-|1-(x-m)2|关于y轴对称,记a=f(m+2),b=f(log5$\frac{1}{2}$),c=f(e${\;}^{\frac{1}{2}}}$),则a,b,c的大小关系是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

分析 先由偶函数的性质求出f(x)=1-|1-x2|,由此利用对数函数和指数函数的性质能求出a,b,c的大小关系.

解答 解:∵定义在R上的函数f(x)=1-|1-(x-m)2|关于y轴对称,∴m=0,
∴f(x)=1-|1-x2|,
∵a=f(m+2)=f(2)=1-|1-22|=-2,
b=f(log5$\frac{1}{2}$)=1-|1-($lo{g}_{5}\frac{1}{2}$)2|=(log5$\frac{1}{2}$)2∈(0,1),
c=f(e${\;}^{\frac{1}{2}}}$)=1-|1-(${e}^{\frac{1}{2}}$)2|=1-|1-e|=2-e≈-0.71828,
∴a<c<b.

点评 本题考查三个数的大小关系的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图:已知四棱锥P-ABCD,底面是边长为6的正方形ABCD,PA=8,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM、AN、MN.
(1)求证:AB⊥MN
(2)求异面直线AM与PB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设m,n分别是先后抛掷一枚骰子得到的点数,则方程x2+mx+n=0有实根的概率为(  )
A.$\frac{19}{36}$B.$\frac{11}{36}$C.$\frac{7}{12}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到五棱锥P-ABFED,且AP=$\sqrt{30}$,PB=$\sqrt{10}$.
(1)求证:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,且双曲线的一个焦点在抛物线y2=20x的准线上,则双曲线的方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆心为(a,a)(a≠0)且过原点的圆的方程是(  )
A.(x-1)2+(y-1)2=$\sqrt{2}$B.(x+1)2+(y+1)2=$\sqrt{2}$aC.(x+a)2+(y+a)2=2a2D.(x-a)2+(y-a)2=2a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(x,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.${{(2{{x}^{3}}-\frac{1}{\sqrt{x}})}^{n}}$的展开式中各二项式系数之和为128,则${{(2{{x}^{3}}-\frac{1}{\sqrt{x}})}^{n}}$的展开式中常数项是(  )
A.-14B.14C.-42D.42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平行四边形ABCD中,∠A=$\frac{π}{3}$,边AB,AD的长分别为2,1,若M,N分别是边BC,CD上的点,且满足$\frac{|\overrightarrow{BM}|}{|\overrightarrow{BC}|}$=$\frac{|\overrightarrow{CN}|}{|\overrightarrow{CD}|}$,则$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范围是(  )
A.[1,4]B.[2,5]C.[2,4]D.[1,5]

查看答案和解析>>

同步练习册答案