精英家教网 > 高中数学 > 题目详情
3.如图:已知四棱锥P-ABCD,底面是边长为6的正方形ABCD,PA=8,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM、AN、MN.
(1)求证:AB⊥MN
(2)求异面直线AM与PB所成角的大小.

分析 (1)由题意,证明线线垂直,利用“三垂线定理或三垂线定理的逆定理”即可解决.
(2)异面直线所成角,首先要构造出这两条异面直线的平行线相交的角,即为异面直线所成角.由题意,分别取AB,PA中点E,F,连接CE,EF,CF,所以异面直线AM与PB所成角的大小即相交直线CF与EF所成角的大小.

解答 解:(1)分别取AB,PA中点E,F,连接CE,EF,CF,NE,ME.
∵E是AB中点,点N是PB的中点,
∴$E{N}_{=}^{∥}\frac{1}{2}AP$
∵PA⊥面ABCD,
∴NE⊥面ABCD,NE⊥AB.
又∵MN∥BC,∴MN⊥AB.
所以:AB⊥MN,
得证.

(2)∵E是AB中点,F是PA中点E,N是PB的中点,点M是CD的中点
∴AM${\;}_{=}^{∥}$CE,FE${\;}_{=}^{∥}\frac{1}{2}PB$.
所以:异面直线AM与PB所成角的大小即相交直线CF与EF所成角的大小
在△CEF中:EC=MA=$\sqrt{A{D}^{2}+D{M}^{2}}$=$3\sqrt{5}$,FE=$\frac{1}{2}PB=5$,FC=$\sqrt{A{F}^{2}+A{C}^{2}}=2\sqrt{22}$.
利用余弦定理:
cos∠FEC=$\frac{F{E}^{2}+E{C}^{2}-F{C}^{2}}{2EF•EC}=\frac{25+45-88}{2×3\sqrt{5}×5}=-\frac{3\sqrt{5}}{25}$
∵cos∠FEC<0,
∴∠FEC是钝角.
所以异面直线AM与PB所成角的大小为π-$arccos\frac{{3\sqrt{5}}}{25}$.

点评 本题考查了“三垂线定理或三垂线定理的逆定理”证明线线垂直问题.考查了异面直线所成角问题.还利用了余弦定理求角度,注意异面直线所成角范围是(0,π],这是易错点.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,内角A,B,C所对的边分别为a,b,c,b(1-2cosA)=2acosB.
(1)证明:b=2c;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,求:
(1)a1+a2+…+a7
(2)a1+a3+a5+a7
(3)|a0|+|a1|+…+|a7|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列函数:①y=($\sqrt{x}$)2,②y=x3,③y=2|x|,④y=$\frac{2}{{x}^{2}}$,其中关于y轴对称的是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{2}^{4}$$\frac{{x}^{3}-3{x}^{2}+5}{{x}^{2}}$dx的值为(  )
A.1B.$\frac{1}{4}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数$y={log}_{\frac{1}{2}}sin(\frac{π}{3}-2x)$的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法中,正确的个数是(  )
①与角$\frac{π}{5}$的终边相同的角有有限个
②圆的半径为6,则15°的圆心角与圆弧围成的扇形面积为$\frac{3π}{2}$
③正相关是指散点图中的点散布在从左上角到右下角区域
④cos260°>0.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:函数y=loga(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:函数y=|sinx|的最小正周期为2π,则(  )
A.“p∧q”为真B.“p∨q”为假C.p真q假D.p假q真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)=1-|1-(x-m)2|关于y轴对称,记a=f(m+2),b=f(log5$\frac{1}{2}$),c=f(e${\;}^{\frac{1}{2}}}$),则a,b,c的大小关系是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

同步练习册答案