分析 先化简函数的解析式,复合函数的单调性,对数函数的单调性可得,本题即求sin(2x-$\frac{π}{3}$)的单调递增区间,且sin(2x-$\frac{π}{3}$)小于0恒成立,故有2kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<2kπ(k∈Z),由此求得原函数的增区间.
解答 解:函数$y=\frac{{{{log}_2}[{-sin(2x-\frac{π}{3})}]}}{{{{log}_2}\frac{1}{2}}}=-{log_2}[{-sin({2x-\frac{π}{3}})}]$,∵2>1,由复合函数的单调性知,
本题即求sin(2x-$\frac{π}{3}$)的单调递增区间,且sin(2x-$\frac{π}{3}$)小于0恒成立.
∴2x-$\frac{π}{3}$在第四象限.∴2kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<2kπ(k∈Z).
解得:kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{6}$(k∈Z).
∴原函数的单调递增区间为(kπ-$\frac{π}{12}$,kπ+$\frac{π}{6}$)(k∈Z).
点评 本题主要考查复合函数的单调性,对数函数、正弦函数的单调性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2) | B. | (-∞,-2] | C. | (-∞,-4) | D. | (-∞,-4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{7}$ | B. | $\sqrt{30}$ | C. | $\frac{\sqrt{15}}{2}$ | D. | $\frac{\sqrt{30}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+(y-1)2=$\sqrt{2}$ | B. | (x+1)2+(y+1)2=$\sqrt{2}$a | C. | (x+a)2+(y+a)2=2a2 | D. | (x-a)2+(y-a)2=2a2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com