精英家教网 > 高中数学 > 题目详情
4.在△ABC中,内角A,B,C所对的边分别为a,b,c,b(1-2cosA)=2acosB.
(1)证明:b=2c;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面积.

分析 (1)利用正弦定理、和差公式即可得出.
(2)利用同角三角函数基本关系式可得cosA,sinA.再利用余弦定理可得c,利用三角形面积计算公式即可得出.

解答 解:(1)∵b(1-2cosA)=2acosB,
∴由正弦定理得sinB(1-2cosA)=2sinAcosB,∴sinB=2sinBcosA+2sinAcosB=2sin(A+B)=2sinC,∴b=2c.
(2)∵tanA=$\frac{sinA}{cosA}$=2$\sqrt{2}$,∴sinA=2$\sqrt{2}$cosA,∴sin2A+cos2A=$(2\sqrt{2}cosA)^{2}$+cos2A=1,
A为锐角,解得$cosA=\frac{1}{3}$,∴$sinA=\frac{{2\sqrt{2}}}{3}$.
由余弦定理有$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$,即$\frac{1}{3}=\frac{{4{c^2}+{c^2}-1}}{{4{c^2}}}$,解得${c^2}=\frac{3}{11}$,
∴${S_{△ABC}}=\frac{1}{2}bcsinA={c^2}sinA=\frac{3}{11}•\frac{{2\sqrt{2}}}{3}=\frac{{2\sqrt{2}}}{11}$.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2sin($\frac{π}{2}$x+$\frac{π}{3}$),则f(1)+f(2)+…+f(2016)的值为(  )
A.1B.1-$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={y|y=3x,x∈R},B={x|-1<x<1},则A∪B=(  )
A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知矩形ABCD中,AB=2,AD=1,$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$,则$\overrightarrow{MC}$•$\overrightarrow{MD}$的值为(  )
A.-$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c(b<c).满足ccosB+bcosC=2acosA.
(1)求角A的大小;
(2)若△ABC的周长为20,面积为10$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{5(\frac{1}{2})^{2x},-1≤x<1}\\{1+\frac{4}{{x}^{2}},x≥1}\end{array}\right.$设m>n≥-1,且f(m)=f(n),则m•f($\sqrt{2}$m)的最小值为(  )
A.4B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$cosx•sin(x+\frac{π}{6})$
(1)求函数f(x)的最小正周期;’
(2)将函数y=f(x)的图象向下平移$\frac{1}{4}$个单位,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,求使g(x)>$\frac{1}{2}$成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sinx的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图:已知四棱锥P-ABCD,底面是边长为6的正方形ABCD,PA=8,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM、AN、MN.
(1)求证:AB⊥MN
(2)求异面直线AM与PB所成角的大小.

查看答案和解析>>

同步练习册答案