分析 (1)利用正弦定理、和差公式即可得出.
(2)利用同角三角函数基本关系式可得cosA,sinA.再利用余弦定理可得c,利用三角形面积计算公式即可得出.
解答 解:(1)∵b(1-2cosA)=2acosB,
∴由正弦定理得sinB(1-2cosA)=2sinAcosB,∴sinB=2sinBcosA+2sinAcosB=2sin(A+B)=2sinC,∴b=2c.
(2)∵tanA=$\frac{sinA}{cosA}$=2$\sqrt{2}$,∴sinA=2$\sqrt{2}$cosA,∴sin2A+cos2A=$(2\sqrt{2}cosA)^{2}$+cos2A=1,
A为锐角,解得$cosA=\frac{1}{3}$,∴$sinA=\frac{{2\sqrt{2}}}{3}$.
由余弦定理有$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$,即$\frac{1}{3}=\frac{{4{c^2}+{c^2}-1}}{{4{c^2}}}$,解得${c^2}=\frac{3}{11}$,
∴${S_{△ABC}}=\frac{1}{2}bcsinA={c^2}sinA=\frac{3}{11}•\frac{{2\sqrt{2}}}{3}=\frac{{2\sqrt{2}}}{11}$.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 1-$\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (0,1) | C. | (-1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com