精英家教网 > 高中数学 > 题目详情
14.若log2(3a+4b)=log2a+log2b,则a+b的最小值是7+4$\sqrt{3}$.

分析 利用已知条件求出得到$\frac{4}{a}$+$\frac{3}{b}$=1,然后根据基本不等式即可求解表达式的最小值.

解答 解:∵log2(3a+4b)=log2a+log2b=log2ab,
∴a>0,b>0,3a+4b=ab,
∴$\frac{4}{a}$+$\frac{3}{b}$=1,
∴a+b=(a+b)($\frac{4}{a}$+$\frac{3}{b}$)=4+3+$\frac{3a}{b}$+$\frac{4b}{a}$≥7+4$\sqrt{3}$,当且仅当a=4+2$\sqrt{3}$,b=2$\sqrt{3}$+3时取等号,
故答案为:$7+4\sqrt{3}$

点评 本题考查基本不等式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.等差数列{an}的前n项和为Sn,且a3=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1-bn=an(n∈N+)且b1=3,求数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若F1、F2为双曲线C:$\frac{{x}^{2}}{4}$-y2=1的左、右焦点,点P在双曲线C上,∠F1PF2=60°,则P到x轴的距离为$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|等于(  )
A.c-aB.b-aC.a-bD.c-b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了得到函数$y=cos(2x+\frac{π}{4})$的图象,只需把函数y=sin2x的图象上所有的点(  )
A.向左平行移动$\frac{π}{4}$个单位长度B.向左平行移动$\frac{3π}{4}$个单位长度
C.向左平行移动$\frac{π}{8}$个单位长度D.向左平行移动$\frac{3π}{8}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆中心在原点,焦点在x轴上,椭圆上的一点到两焦点的距离和为6,焦距为$2\sqrt{5}$,求椭圆的参数方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示.
(Ⅰ)求直方图中x的值;
(Ⅱ)求月平均用电量的众数和中位数;
(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆心为(0,1),半径为R的圆M与直线x+my-2m-1=0(x∈R)相切,当半径R最大时,圆M的标准方程为x2+(y-1)2=2.

查看答案和解析>>

同步练习册答案