精英家教网 > 高中数学 > 题目详情
2.从双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|等于(  )
A.c-aB.b-aC.a-bD.c-b

分析 设F′是双曲线的右焦点,连接PF′.利用三角形的中位线定理和双曲线的定义可得:|OM|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-a=|MF|-a,于是|OM|-|MT|=|MF|-|MT|-a=|FT|-a,连接OT,则OT⊥FT,在Rt△FOT中,|OF|=c,|OT|=a,可得|FT|=$\sqrt{丨OF{丨}^{2}-丨OT{丨}^{2}}$=b.即可得出结论.

解答 解:如图所示,设F′是双曲线的右焦点,连接PF′.
∵点M,O分别为线段PF,FF′的中点,
由三角形中位线定理得到:|OM|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-a
=|MF|-a,
∴|OM|-|MT|=|MF|-|MT|-a=|FT|-a,连接OT,因为PT是圆的切线,
则OT⊥FT,
在Rt△FOT中,|OF|=c,|OT|=a,
∴|FT|=$\sqrt{丨OF{丨}^{2}-丨OT{丨}^{2}}$=b.
∴|OM|-|MT|=b-a.
故选B.

点评 本题考查了双曲线的定义和性质的运用,结合三角形的中位线定理、直线与圆相切的性质等知识,考查学生的计算能力和分析能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设集合A={y|y=cosx,x∈R},B={y|y=2x,x∈A},则A∩B=(  )
A.$[{\frac{1}{2},1}]$B.[1,2]C.$[{0,\frac{1}{2}}]$D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$({x+3}){({1-\frac{2}{{\sqrt{x}}}})^n}$的展开式中常数项为43,则$\int_2^n{2xdx=}$21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若(x3+$\frac{1}{{x}^{2}}$)n展开式中只有第6项系数最大,则展开式的常数项是(  )
A.210B.120C.461D.416

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π).
(1)求sin($\frac{π}{6}$-α)的值;
(2)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求四棱锥的体积V和截面ADMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若log2(3a+4b)=log2a+log2b,则a+b的最小值是7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\sqrt{3}sinωx-2{cos^2}\frac{ω}{2}$x+1(ω>0)直线y=2与函数f(x)图象相邻两交点的距离为π.
(1)求f(x)的解析式;
(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若点$(\frac{B}{4},0)$是函数y=f(x)图象的一个对称中心,且b=2$\sqrt{3}$,a+c=6,求△ABC面积.

查看答案和解析>>

同步练习册答案