精英家教网 > 高中数学 > 题目详情
9.如果随机变量ξ~N(μ,σ2),Eξ=3,Dξ=1,P(ξ<0)=p,则P(ξ<6)等于(  )
A.$\frac{1}{2}-p$B.$\frac{1}{2}+p$C.$\frac{1}{2}+\frac{p}{2}$D.1-p

分析 根据随机变量X服从正态分布N(μ,σ2),看出这组数据对应的正态曲线的对称轴x=μ,根据正态曲线的特点得到结果.

解答 解:∵随机变量ξ~ξ:N(μ,σ2),且Eξ=3,Dξ=1
∴μ=Eξ=3,σ2=Dξ=1,
对称轴是x=3,
∵P(ξ<0)=p,
∴P(ξ>6)=p
P(ξ<6)=1-P(ξ>6)=1-p,
故选:D.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,解题的关键是理解并掌握正态分布的对称性特征与概率的关系,由此解出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.幂函数y=f(x)经过点(3,$\sqrt{3}$),则f(x)是(  )
A.偶函数,且在(0,+∞)上是增函数
B.偶函数,且在(0,+∞)上是减函数
C.奇函数,且在(0,+∞)是减函数
D.非奇非偶函数,且在(0,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数y=f(x)在[a,b]上可导且单调递增,则函数g(x)=$\frac{f(x)-f(a)}{x-a}$在(a,b)上的单调性为(  )
A.单调递增B.单调递减C.不增不减D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=ccosB+3asin(A+B).
(1)若$\frac{b}{a}$=$\sqrt{3}$,求角C;
(2)在(1)的条件下,若△ABC的面积为$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的图象如图所示,则函数y=f(x)+ω的对称中心坐标为(  )
A.($\frac{2}{3}$kπ+$\frac{π}{24}$,$\frac{3}{2}$)(k∈Z)B.(3kπ-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)C.($\frac{1}{2}$kπ+$\frac{5π}{8}$,$\frac{3}{2}$)(k∈Z)D.($\frac{3}{2}kπ$-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.据统计,夏季期间某旅游景点每天的游客人数服从正态分布N(1000,1002),则在此期间的某一天,该旅游景点的人数不超过1300的概率为(  )
附:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.
A.0.4987B.0.8413C.0.9772D.0.9987

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.点E和F分别在线段BC和DC上,且$\overline{BE}=\frac{2}{3}\overline{BC},\overline{DF}=\frac{1}{6}\overline{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为(  )
A.$\frac{5}{3}$B.$\frac{14}{9}$C.$\frac{29}{18}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={-1,1,$\frac{1}{2}$,3},B={y|y=x2,x∈A},则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一组样本数据的频率分布直方图如图所示,试估计样本数据的中位数为(  )
A.$\frac{100}{9}$B.11.52C.12D.13

查看答案和解析>>

同步练习册答案