精英家教网 > 高中数学 > 题目详情
1.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.点E和F分别在线段BC和DC上,且$\overline{BE}=\frac{2}{3}\overline{BC},\overline{DF}=\frac{1}{6}\overline{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为(  )
A.$\frac{5}{3}$B.$\frac{14}{9}$C.$\frac{29}{18}$D.$\frac{4}{3}$

分析 根据平面向量数量积的公式和运算性质,进行运算求解即可.

解答 解:如图所示,
等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°,
∴BG=$\frac{1}{2}$BC=$\frac{1}{2}$,CD=2-1=1,∠BCD=120°,
∵$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{6}$$\overrightarrow{DC}$,
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}$+$\overrightarrow{BE}$)•($\overrightarrow{AD}$+$\overrightarrow{DF}$)=($\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{BC}$)•($\overrightarrow{AD}$+$\frac{1}{6}$$\overrightarrow{DC}$)
=$\overrightarrow{AB}$•$\overrightarrow{AD}$+$\frac{1}{6}$$\overrightarrow{AB}$•$\overrightarrow{DC}$+$\frac{2}{3}$$\overrightarrow{BC}$•$\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{BC}$•$\frac{1}{6}$$\overrightarrow{DC}$
=2×1×cos60°+$\frac{1}{6}$×2×1×cos0°+$\frac{2}{3}$×1×1×cos60°+$\frac{2}{3}$×$\frac{1}{6}$×1×1×cos120°
=1+$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{18}$=$\frac{29}{18}$.
故选:C.

点评 本题考查了平面向量的数量积运算问题,根据条件确定向量的长度和夹角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知各项均不为0的数列{an}的前n项和为Sn,对任意正整数n,有4Sn=(2n+1)an+1.
(1)求a1的值及数列{an}的通项公式;
(2)对一切正整数n,设bn=$\frac{(-1)^{n}4n}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|-1<x≤3},B={-2,-1,0,3,4},则A∩B=(  )
A.{0}B.{0,3}C.{-1,0,3}D.{0,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果随机变量ξ~N(μ,σ2),Eξ=3,Dξ=1,P(ξ<0)=p,则P(ξ<6)等于(  )
A.$\frac{1}{2}-p$B.$\frac{1}{2}+p$C.$\frac{1}{2}+\frac{p}{2}$D.1-p

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设X~N(1,δ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为(  )
附:(随机变量ξ服从正态分布N(μ,δ2),则P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%
A.6038B.6587C.7028D.7539

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设i是虚数单位,若复数a-$\frac{17}{4-i}$(a∈R)是纯虚数,则实数a的值为(  )
A.-4B.-1C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设随机变量ξ服从正态分布N(3,4),若p(ξ<2a-1)=p(ξ>a+2),则a=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的单位向量,则|$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$|=(  )
A.2B.$\sqrt{5}$C.无答案D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.($\sqrt{2x}$-$\frac{1}{5{x}^{2}}$)5的展开式中常数项为-4.

查看答案和解析>>

同步练习册答案