分析 (1)根据数列的递推公式即可求出数列{an}的通项公式,
(2)根据等差数列和等比数列的前n项和公式计算即可.
解答 解:(1)2Sn=3an-3,
∴当n≥2时,有2Sn-1=3an-1-3,
两式相减得2an=3an-3an-1,
∴an=3an-1,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=3,
∴{an}是以3为公比的等比数列,
当n=1时,2S1=3a1-3,
∴a1=3,
∴数列{an}的通项公式为:an=3×3n-1=3n,
(2)bn=2an-3n=2×3n-3n,
∴Tn=2(3+32+33+…+3n)-3(1+2+3+…+n)=2×$\frac{3(1-{3}^{n})}{1-3}$-3×$\frac{n(n+1)}{2}$=3n+1-$\frac{3}{2}$n2-$\frac{3}{2}$n-3.
点评 本题考查了数列的递推公式和等差数列和等比数列的前n项和公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n∥α,则m∥n | B. | 若m∥α,n∥β,则a∥β | ||
| C. | 若a丄γ,β丄γ,则a∥β | D. | 若m丄α,n丄α,则m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | -8 | C. | ±8 | D. | ±64 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16,12-4$\sqrt{3}$ | B. | 17,13-4$\sqrt{3}$ | C. | 19,12-4$\sqrt{3}$ | D. | 20,13-4$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com