分析 求出不等式对应的等价条件,利用充分条件和必要条件的定义建立条件关系即可得到结论.
解答 解:∵x2-4ax+3a2<0(a<0),
∴(x-a)(x-3a)<0,
则3a<x<a,(a<0),
由x2-x-6≤0得-2≤x≤3,
∵¬p是¬q的必要非充分条件,
∴q是p的必要非充分条件,
即$\left\{\begin{array}{l}{3a≥-2}\\{a≤3}\\{a<0}\end{array}\right.$,即$-\frac{2}{3}$≤a<0,
故答案为:$[-\frac{2}{3},0)$
点评 本题主要考查充分条件和必要条件的应用,利用逆否命题的等价性进行转化是解决本题的关键,注意要分类讨论.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | .6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com