精英家教网 > 高中数学 > 题目详情
8.已知(1+3x)n的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数的最大的项及所有项的系数之和.

分析 根据Cnn+Cnn-1+Cnn-2=121 求得n=15,利用二项式系数的性质可得展开式中二项式系数的最大;在(1+3x)n的展开式中,令n=1时,可得所有项的系数之和系数之和.

解答 解:由题意可得,Cnn+Cnn-1+Cnn-2=121,即 1+n+$\frac{n(n-1)}{2}$=121,解得n=15,
故展开式中二项式系数的最大的项为第8项或第9项,
在(1+3x)n的展开式中,令x=1时,可得所有项的系数之和系数之和为415

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,求它们的高之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x,y∈R,且圆C:(x-1)2+(y+2)2=4,求(x+2)2+(y-2)2的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\frac{kx+b}{e^x}$.
( I)若f(x)在x=0处的切线方程为y=x+1,求k与b的值;
( II)求${∫}_{0}^{1}$${\frac{x}{e^x}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解关于x的不等式ax2+(ab+ac)x+abc<0(a≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正方体ABCD-A1B1C1D1的棱长为a.
(Ⅰ)求证:平面A1BC1∥平面AD1C;
(Ⅱ)求正方体夹在平面A1BC1与平面AD1C之间的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin x+acos x的图象经过点(-$\frac{π}{3}$,0).
(1)求实数a的值;
(2)设g(x)=f(x)-2,求函数g(x)的单调递增区间,g(x)的最大值以及使得g(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tan(π+α)=2,求下列各式的值:
(1)$\frac{{2cos(\frac{π}{2}-α)+sin(\frac{π}{2}+α)}}{{sin(π+α)+3sin(\frac{3π}{2}+α)}}$;  
(2)$\frac{1}{{({sinα-3cosα})({cosα-sinα})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若点P(x,y)在不等式组$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$所确定的区域内,则z=y-x的最大值为3.

查看答案和解析>>

同步练习册答案