分析 (I)证明四边形BCD1A1,ACC1A1为平行四边形即可得出A1B∥D1C,AC∥A1C1,从而得出平面A1BC1∥平面AD1C;
(II)用正方体的体积减去两个小三棱锥的体积即为夹在平面A1BC1与平面AD1C之间的几何体的体积.
解答 (I)证明:∵BC∥A1D1,BC=A1D1,![]()
∴四边形BCD1A1是平行四边形,
∴A1B∥D1C,
同理可得:A1C1∥AC,
又A1B?平面A1BC1,A1C1?平面A1BC1,
D1C?平面AD1C,AC?平面AD1C,AC∩D1C=C,A1B∩A1C1=A1,
∴平面A1BC1∥平面AD1C.
(II)解:V${\;}_{B-{A}_{1}{B}_{1}{C}_{1}}$=V${\;}_{{D}_{1}-ACD}$=$\frac{1}{3}{S}_{△ACD}•D{D}_{1}$=$\frac{1}{3}×\frac{1}{2}{a}^{2}•a=\frac{{a}^{3}}{6}$,
∴V${\;}_{{A}_{1}B{C}_{1}-A{D}_{1}C}$=V正方体-V${\;}_{B-{A}_{1}{B}_{1}{C}_{1}}$-V${\;}_{{D}_{1}-ACD}$=a3-$\frac{{a}^{3}}{6}$-$\frac{{a}^{3}}{6}$=$\frac{2{a}^{3}}{3}$.
点评 本题考查了面面平行的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5+\frac{1}{2}t}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5-\frac{1}{2}t}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5-\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 23 | C. | 34 | D. | 46 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com