精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1
(1)求它的振幅、最小正周期、初相;
(2)画出函数y=f(x)在[-$\frac{π}{2},\frac{π}{2}}$]上的图象.

分析 (1)由条件利用函数y=Asin(ωx+φ)的图象、性质得出结论.
(2)用五点法作函数y=Asin(ωx+φ)在一个周期上的简图.

解答 解:(1)由函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1,
振幅A=$\sqrt{2}$,最小正周期T=$\frac{2π}{ω}$=$\frac{2π}{2}$=π,初相-$\frac{π}{4}$,
(2)x∈[-$\frac{π}{2},\frac{π}{2}}$]
做出函数图象如图,2x-$\frac{π}{4}$∈[-$\frac{5π}{4}$,$\frac{3π}{4}$],
列表:

 2x-$\frac{π}{4}$-$\frac{5π}{4}$-$\frac{π}{2}$ 0 $\frac{π}{2}$$\frac{3π}{4}$
 x-$\frac{π}{2}$-$\frac{3π}{8}$-$\frac{π}{8}$ $\frac{π}{8}$ $\frac{3π}{8}$ $\frac{π}{2}$
 y 1 0-$\sqrt{2}$ 0 $\sqrt{2}$ 1
作图:

点评 本题主要考查正弦函数的图象性质,用五点法作函数函数y=Asin(ωx+φ)的一个周期上的简图,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{1}{2}$x2-ln(1-x)的单调增区间为($\frac{1-\sqrt{5}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\frac{kx+b}{e^x}$.
( I)若f(x)在x=0处的切线方程为y=x+1,求k与b的值;
( II)求${∫}_{0}^{1}$${\frac{x}{e^x}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正方体ABCD-A1B1C1D1的棱长为a.
(Ⅰ)求证:平面A1BC1∥平面AD1C;
(Ⅱ)求正方体夹在平面A1BC1与平面AD1C之间的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin x+acos x的图象经过点(-$\frac{π}{3}$,0).
(1)求实数a的值;
(2)设g(x)=f(x)-2,求函数g(x)的单调递增区间,g(x)的最大值以及使得g(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x+2y+4z=1,则x2+y2+z2的最小值是(  )
A.21B.$\frac{1}{21}$C.16D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tan(π+α)=2,求下列各式的值:
(1)$\frac{{2cos(\frac{π}{2}-α)+sin(\frac{π}{2}+α)}}{{sin(π+α)+3sin(\frac{3π}{2}+α)}}$;  
(2)$\frac{1}{{({sinα-3cosα})({cosα-sinα})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,若an=3+33+35+…+32n+1,则an=(  )
A.$\frac{{3•({1-{3^n}})}}{1-3}$B.$\frac{{3•({1-{3^{2n+1}}})}}{1-3}$C.$\frac{{3•({1-{9^n}})}}{1-9}$D.$\frac{{3•({1-{9^{n+1}}})}}{1-9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行程序框图,若输入a,b,i的值分别为6,8,0,则输出a和i的值分别为(  )
A.2,4B.0,4C.2,3D.0,3

查看答案和解析>>

同步练习册答案