分析 (1)由条件利用函数y=Asin(ωx+φ)的图象、性质得出结论.
(2)用五点法作函数y=Asin(ωx+φ)在一个周期上的简图.
解答 解:(1)由函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1,
振幅A=$\sqrt{2}$,最小正周期T=$\frac{2π}{ω}$=$\frac{2π}{2}$=π,初相-$\frac{π}{4}$,
(2)x∈[-$\frac{π}{2},\frac{π}{2}}$]
做出函数图象如图,2x-$\frac{π}{4}$∈[-$\frac{5π}{4}$,$\frac{3π}{4}$],
列表:
| 2x-$\frac{π}{4}$ | -$\frac{5π}{4}$ | -π | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | $\frac{3π}{4}$ |
| x | -$\frac{π}{2}$ | -$\frac{3π}{8}$ | -$\frac{π}{8}$ | $\frac{π}{8}$ | $\frac{3π}{8}$ | $\frac{π}{2}$ |
| y | 1 | 0 | -$\sqrt{2}$ | 0 | $\sqrt{2}$ | 1 |
点评 本题主要考查正弦函数的图象性质,用五点法作函数函数y=Asin(ωx+φ)的一个周期上的简图,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | $\frac{1}{21}$ | C. | 16 | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3•({1-{3^n}})}}{1-3}$ | B. | $\frac{{3•({1-{3^{2n+1}}})}}{1-3}$ | C. | $\frac{{3•({1-{9^n}})}}{1-9}$ | D. | $\frac{{3•({1-{9^{n+1}}})}}{1-9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com