精英家教网 > 高中数学 > 题目详情
18.若点P(x,y)在不等式组$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$所确定的区域内,则z=y-x的最大值为3.

分析 ①画可行域;②z为目标函数的纵截距;③画直线z=x-y.平移可得直线过A或B时z有最值.

解答 解:画不等式组$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$的可行域如图,
画直线z=y-x,
平移直线z=y-x过点A时z有最大值;由$\left\{\begin{array}{l}{x+y-7=0}\\{2x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,A(2,5),
z=y-x的最大值为:3.
故答案为:3.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知(1+3x)n的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数的最大的项及所有项的系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.角A是△ABC的一个内角,若函数y=cos(2x+A)的图象的一个对称中心为($\frac{π}{3}$,0),则A=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从两名老师和四名学生中选出四人排成一排照相,其中老师必须入选且相邻,共有排列方法(  )
A.36种B.72种C.90种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R).若$\overrightarrow{a}$与$\overrightarrow{b}$夹角的锐角,求x的取值范围是(-1,0)∪(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)是定义在R上不恒为0的函数,且对于任意的实数a,b满足f(2)=2,f(ab)=af(b)+bf(a),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),给出下列命题:
①f(0)=f(1);
②f(x)为奇函数;
③数列{an}为等差数列;
④数列{bn}为等比数列.
其中正确的命题是①②③④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.三名男生和两名女生按要求站成一排,分别有多少种不同的站法?(用数字作答)
(Ⅰ)两名女生相邻;
(Ⅱ)女生不能站在两端;
(Ⅲ)女生从左到右由高到矮排;
(Ⅳ)女生甲不排在左端且女生乙不排在右端.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设一个班中有$\frac{1}{3}$的女生,$\frac{1}{5}$的三好学生,而三好学生中女生占$\frac{1}{3}$,若从此班级中任选一名代表参加夏令营活动,试问在已知没有选上女生的条件下,选的是一位三好学生的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin15°=(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

同步练习册答案