【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以
(单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
![]()
(Ⅰ)视
分布在各区间内的频率为相应的概率,求
;
(Ⅱ)将
表示为
的函数,求出该函数表达式;
(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如
,则取
的概率等于市场需求量落入
的频率),求
的分布列及数学期望
.
科目:高中数学 来源: 题型:
【题目】以5cm为单位长度作单位圆,分别作出
,
,
,
,
角的正弦线余弦线和正切线,量出它们的长度,写出这些角的正弦余弦和正切的近似值,再使用科学计算器求这些角的正弦余弦和正切,并进行比较.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)(题文)已知椭圆
的离心率为
,过右焦点
且斜率为1的直线交椭圆
于A,B两点, N为弦AB的中点,O为坐标原点.
(1)求直线ON的斜率
;
(2)求证:对于椭圆
上的任意一点M,都存在
,使得
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的极坐标方程为
,曲线
的参数方程为
(
为参数)
(Ⅰ)求直线
的直角坐标方程和曲线
的普通方程;
(Ⅱ)若过
且与直线
垂直的直线
与曲线
相交于两点
,
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品近一个月内(30天)预计日销量
(件)与时间t(天)的关系如图1所示,单价
(万元/件)与时间t(天)的函数关系如图2所示,(t为整数)
![]()
(1)试写出
与
的解析式;
(2)求此商品日销售额的最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆
左、右焦点
的动直线
相交于
点,与椭圆
分别交于
与
不同四点,直线
的斜率
满足
.已知当
与
轴重合时,
,
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在定点
,使得
为定值?若存在,求出
点坐标并求出此定值;若不存在,说明理由.
【答案】(Ⅰ)
;(Ⅱ)
,
和
.
【解析】试题分析:(1)当
与
轴重合时,
垂直于
轴,得
,得
,
从而得椭圆的方程;(2)由题目分析如果存两定点,则
点的轨迹是椭圆或者双曲线 ,所以把
坐标化,可得
点的轨迹是椭圆,从而求得定点
和点
.
试题解析:
当
与
轴重合时,
, 即
,所以
垂直于
轴,得
,
,, 得
,
椭圆
的方程为
.
焦点
坐标分别为
, 当直线
或
斜率不存在时,
点坐标为
或
;
当直线![]()
斜率存在时,设斜率分别为
, 设![]()
由
, 得:
, 所以:
,
, 则:
![]()
. 同理:![]()
, 因为
, 所以![]()
, 即
, 由题意知
, 所以
, 设
,则
,即
,由当直线
或
斜率不存在时,
点坐标为
或
也满足此方程,所以点
在椭圆
上.存在点
和点
,使得
为定值,定值为
.
考点:圆锥曲线的定义,性质,方程.
【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量
,
,得
,
,从而得椭圆的方程,第二问由题目分析如果存两定点,则
点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把
坐标化,求得
点的轨迹方程是椭圆
,从而求得存在两定点
和点
.
【题型】解答题
【结束】
21
【题目】已知
,
,
.
(Ⅰ)若
,求
的极值;
(Ⅱ)若函数
的两个零点为
,记
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列四个命题:
①等差数列一定是单调数列;
②等差数列的前
项和构成的数列一定不是单调数列;
③已知等比数列
的公比为
,若
,则数列
是单调递增数列.
④记等差数列的前
项和为
,若
,
,则数列
的最大值一定在
处达到.
其中正确的命题有_____.(填写所有正确的命题的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com