精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线平行,求实数的值;

(Ⅱ)若函数在定义域上为增函数,求实数的取值范围;

(Ⅲ)若有两个极值点,且,若不等式恒成立,求实数的取值范围.

【答案】(Ⅰ)1;(Ⅱ);(Ⅲ)

【解析】分析:(1)先求一阶导函数,求参数的值

(2)在定义域上为增函数,转化为恒成立,已知不等式的恒成立,求解参数的取值范围,分离变量,转化为求函数的最值问题。

(3)一阶导函数是方程的两正根,列出两根的关系式,用去表示,不等式的恒成立,求解参数的取值范围,分离变量,转化为求函数的最值问题

详解:(Ⅰ)

(Ⅱ)的定义域为函数在定义域上为增函数,

上恒成立,

上恒成立,

可得,实数的取值范围

(Ⅲ)有两个极值点

是方程的两正根,

不等式恒成立,即恒成立,

即得上是减函数,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增大,下表是该地一农业银行连续五年的储蓄存款(年底余额),如下表:

为了研究方便,工作人员将上表的数据进行了处理,,得到下表:

1)求关于的线性回归方程;

2)求关于的线性回归方程;

3)用所求回归方程预测,到2020年底,该地储蓄存款额大约可达多少?

(附:线性回归方程:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 过点 ,左右焦点为F1(﹣c,0),F2(c,0),且椭圆C关于直线x=c对称的图形过坐标原点.

(I)求椭圆C方程;
(II)圆D: 与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆D的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,底面的边长为2,侧棱长为4,是线段上一点,是线段的中点,的中点.以为正交基底,建立如图所示的空间直角坐标系.

(1)若,求直线和平面所成角的正弦值;

(2)若二面角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,其中.

(1)当时,求函数的单调区间;

(2)若方程有三个互不相同的根0,,其中.

①是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由.

②若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象沿轴向左平移个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:

①该函数的解析式为;

②该函数图象关于点对称;

③该函数在[,上是增函数;

④函数上的最小值为,则

其中,正确判断的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表

分组

频数

频率

10

20

50

20

合计

100

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).

查看答案和解析>>

同步练习册答案