精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为梯形,,若棱两两垂直,长度分别为122,且向量夹角的余弦值为.

1)求的长度;

2)求直线与平面所成角的正弦值.

【答案】12;(2

【解析】

1)如下图建立空间直角坐标系,由,可设,则,向量求出的坐标,利用夹角的余弦值为,结合空间向量法求异面直线的夹角运算公式,求出,即可求出

2)先求出平面的一个法向量,再通过空间向量法求线面角公式,即可求出直线与平面所成角的正弦值.

解:棱两两垂直,以为坐标原点,建立如图所示的空间直角坐标系如图:

,可设,∴

1

解得:,∴

2)易得

设平面的一个法向量,则

,令,则

∴平面的一个法向量

,设直线与平面所成角为

∴直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图①,在平行四边形中,中点.沿折起使平面平面,得到如图②所示的四棱锥.

1)求证:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距和短轴长度相等,且过点

(Ⅰ)求椭圆C的方程;

(Ⅱ)圆与椭圆C分别交y轴正半轴于点AB,过点,且)且与x轴垂直的直线l分别交圆O与椭圆C于点MN(均位于x轴上方),问直线AMBN的交点是否在一条定直线上,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某温泉度假村拟以泉眼为圆心建造一个半径为米的圆形温泉池,如图所示,是圆上关于直径对称的两点,以为圆心,为半径的圆与圆的弦分别交于点,其中四边形为温泉区,III区域为池外休息区,IIIIV区域为池内休息区,设

1)当时,求池内休息区的总面积(IIIIV两个部分面积的和);

2)当池内休息区的总面积最大时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一胸针图样由等腰三角形及圆心在中轴线上的圆弧构成,已知.为了增加胸针的美观程度,设计师准备焊接三条金丝线长度不小于长度,设.

1)试求出金丝线的总长度,并求出的取值范围;

2)当为何值时,金丝线的总长度最小,并求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若 处导数相等,证明:

(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为平行四边形,,EPD的中点,.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小芳、小明两人各拿两颗质地均匀的骰子做游戏,规则如下:若掷出的点数之和为4的倍数,则由原投掷人继续投掷;若掷出的点数之和不是4的倍数,则由对方接着投掷.规定第一次从小明开始.

1)求前4次投掷中小明恰好投掷2次的概率;

2)设游戏的前4次中,小芳投掷的次数为,求随机变量的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数,且.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)已知点P的极坐标为Q为曲线上的动点,求的中点M到曲线的距离的最大值.

查看答案和解析>>

同步练习册答案