精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距和短轴长度相等,且过点

(Ⅰ)求椭圆C的方程;

(Ⅱ)圆与椭圆C分别交y轴正半轴于点AB,过点,且)且与x轴垂直的直线l分别交圆O与椭圆C于点MN(均位于x轴上方),问直线AMBN的交点是否在一条定直线上,请说明理由.

【答案】(Ⅰ);(Ⅱ)两直线交点一定在x轴上,理由详见解析.

【解析】

(Ⅰ)根据题意列出关于的方程,解方程组求出,即可得椭圆方程;

(Ⅱ),,,可推出,然后利用两点坐标写出直线的直线方程,联立直线方程即可求出交点的纵坐标,从而得出直线AM,BN的交点一定在x轴上.

(Ⅰ)由题意可得:,

解得:,,

∴椭圆C的方程为;

(Ⅱ)由题可知,

因为在椭圆上,在圆上,

所以,,

所以,

直线,

直线,

设两直线的交点坐标为,,解得,

故直线AM,BN的交点一定在x轴上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年春节期间,因新冠肺炎疫情防控工作需要,两社区需要招募义务宣传员,现有六位大学生和甲、乙、丙三位党员教师志愿参加,现将他们分成两个小组分别派往两社区开展疫情防控宣传工作,要求每个社区都至少安排1位党员教师及3位大学生,且由于工作原因只能派往社区,则不同的选派方案种数为(

A.60B.90

C.120D.150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左右顶点分别是,离心率为,设点,连接交椭圆于点,坐标原点是

(1)证明:

2设三角形的面积为四边形的面积为 的最小值为1,求椭圆的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=sinωxω0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1A2A3,…,An,…,在点列{An}中存在三个不同的点AkAlAp,使得△AkAlAp是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为ωn,则ω6_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距300千米,汽车从甲地匀速行驶到乙地,速度不超过100千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度(千米/小时)的平方成正比,比例系数为),固定部分为1000.

1)把全程运输成本(元)表示为速度(千米/小时)的函数,并指出这个函数的定义域;

2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①的等差中项;②的等比中项;③数列的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.

已知是公差为2的等差数列,其前项和为________________________

1)求

2)设,是否存在,使得?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为梯形,,若棱两两垂直,长度分别为122,且向量夹角的余弦值为.

1)求的长度;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系内,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

1)把曲线和直线化为直角坐标方程;

2)过原点引一条射线分别交曲线和直线两点,射线上另有一点满足,求点的轨迹方程(写成直角坐标形式的普通方程).

查看答案和解析>>

同步练习册答案