精英家教网 > 高中数学 > 题目详情
17.设命题p:?x0∈(0,+∞),3${\;}^{{x}_{0}}$+x0=2016,命题q:?a∈(0,+∞),f(x)=|x|-ax(x∈R)为偶函数,那么,下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

分析 函数y=3x与函数y=2016-x的图象在第一象限有一个交点,即可判断出命题p的真假.若f(x)=|x|-ax(x∈R)为偶函数,则f(-x)=f(x),解解得a=0,即可判断出命题q的真假,进而得出答案.

解答 解:∵函数y=3x与函数y=2016-x的图象在第一象限有一个交点,∴?x0∈(0,+∞),3${\;}^{{x}_{0}}$+x0=2016,因此命题p是真命题.
若f(x)=|x|-ax(x∈R)为偶函数,则f(-x)=f(x),解得a=0,∴命题q是假命题.
因此只有p∧(¬q)是真命题.
故选:C.

点评 本题考查了复合命题真假的判定方法、函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设命题p:函数f(x)=ex在R上为增函数;命题q:函数f(x)=cos2x为奇函数,则下列命题中真命题是(  )
A.p∧qB.(¬p)∨qC.(¬p)∧(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C的方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦点分别是F1,F2,已知点M坐标为(2,1).双曲线C上点P(x0,y0)(x0>0,y0>0)满足$\overrightarrow{OM}$=$\overrightarrow{OP}$+λ($\frac{\overrightarrow{P{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$+$\frac{\overrightarrow{P{F}_{2}}}{|P{F}_{2}|}$),则S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax-2-lnx(a∈R).
(1)若f(x)在点(e,f(e))处的切线斜率为$\frac{1}{e}$,求a的值;
(2)当a>0时,求f(x)的单调区间;
(3)若g(x)=ax-ex,求证:在x>0时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把5名新同学分配到高一年级的A,B,C三个班,每班至少分配一人,若A班要分配2人,则不同的分配方法的种数为(  )
A.90B.80C.60D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{x}{1+x}$-aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1,求函数f(x)的最大值
(2)当a<0,且对任意实数x1,x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1(a>0)的右顶点到其一条渐近线的距离等于$\frac{\sqrt{3}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,直线l的方程为x-y+4=0,在抛物线上有一动点M到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为(  )
A.$\frac{5\sqrt{2}}{2}$+2B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,A,B,C所对的边分别为a,b,c,A为钝角,sinBcosC+cosBsinC=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求A;
(Ⅱ)若a=2$\sqrt{7}$且b>c,△ABC的面积为2$\sqrt{3}$,求边b和c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若xy满足|x|+|y|≤1.则z=2x-y的取值范围是[-2,2].

查看答案和解析>>

同步练习册答案