【题目】如图,在菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF//AE,AB=AE=2.![]()
(1)求证:BD⊥平面ACFE;
(2)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦值.
【答案】
(1)证明:在菱形
中,可得
,又因为
平面
,
,且
平面 ![]()
(2)解:取
的中点为
,以
为坐标原点,以
为
轴,以
为
轴,以
为
轴,建立空间直角坐标系,则
,则
,设平面
的法向量
,
由
,也就是
,可取
①
则
,解得
,故 ![]()
![]()
设平面
的法向量为 ![]()
设平面
的法向量为
,
同理①可得 ![]()
则
,则二面角
的余弦值为 ![]()
【解析】本题主要考查空间二面角的求法以及线面垂直的判定定理的应用。(1)主要是利用线面垂直的判定定理和性质定理进行证明。(2)建立空间直角坐标系,利用向量坐标进行求解。
【考点精析】关于本题考查的直线与平面垂直的判定,需要了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.存在
,使得
的否定是:不存在
,使得 ![]()
B.对任意
,均有
的否定是:存在
,使得 ![]()
C.若
,则
或
的否命题是:若
,则
或 ![]()
D.若
为假命题,则命题
与
必一真一假
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,将函数
的图象向左平移
个单位长度,再向下平移
个单位长度,得到函数
的图象.
(Ⅰ)求函数
的单调递增区间;
(Ⅱ)在锐角
中,角
的对边分别为
.若
,
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形
中,点
在线段
上,
,
,沿直线
将
翻折成
,使点
在平面
上的射影
落在直线
上.
(Ⅰ)求证:直线
平面
;
(Ⅱ)求二面角
的平面角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照
分成8组,制成了如图1所示的频率分布直方图.![]()
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在
和
两个空白框中,可以分别填入( )![]()
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018福建福州市一中高三上学期期中考试】已知椭圆
:
的右焦点为
,点
在椭圆上,且
与
轴交点恰为
中点.
(I)求椭圆
的方程;
(II)过
作两条互相垂直的直线,分别交椭圆
于点
和
.求四边形
的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com